隨著科技的發展，雷達多目標追蹤系統不論在軍事國防或民用航空方面，成為廣泛研究的議題。為了因應日益複雜的追蹤環境，提升追蹤系統之效能極為迫切需要。資料相關結合在多目標追蹤系統中是最重要的技術法則。因為在追蹤多目標物時，資料相關結合可以發現雷達量測值與軌跡間的關聯性；而錯誤的資料結合會導致目標軌跡合成錯誤，無法持續追蹤。本論文提出一新的追蹤演算法，即應用競爭型類神經網路（Competitive Hopfield Neural Network）之運算架構於雷達目標追蹤系統，此運算將可有效且最佳化地決定雷達感測資料與目標軌跡間的關係，進而準確估算目標物目前的位置及其他資訊。同時應用卡門濾波器估測系統，以獲取最佳估測；系統中加入了適應性程序追蹤架構，更可以成功地解決目標發生變速度（Maneuvering）的問題，進而降低追蹤的誤差及錯誤率。經模擬驗證結果，本論文提出之競爭型類神經網路追蹤法則能有效應用於多目標追蹤系統並解決資料相關結合與目標追蹤之問題，提升追蹤系統與資料相關結合的精確性。
37. "Neural Network Design" Matin T.hagan, Howard B.Demuth, Mark Beale THOMSON.