ESD Implantations in Sub-Quarter-Micron Bulk CMOS Technology

Ens. Kai Jen, Jong Ying Meng
E-mail: 9511373@mail.dyu.edu.tw

ABSTRACT

In enduring the nano CMOS integrated circuit, the static discharges (ESD) the protective capacities are reduced by a wide margin as the size of the component is reduced. Traditional ESD already to protect circuit design and method can't bear using, endure nano system ESD protect component select and ESD protect circuit it designs to be must in order to improve. We have initial NMOS component which lead open characteristic already-on (native) to one, study its ESD component characteristic, and propose its innovative application in enduring the rice CMOS integrated circuit. This kind of already-on (native) NMOS component has characteristic lower or of shouldering the critical voltage (threshold voltage more). When IC is shelled by ESD, this kind of already-on (native) component will lead the open characteristic initially, that is to say, when IC floats and connects, this kind of already-on (native) component will be leading the open state and coming down to wait for the bombardment of ESD. So this kind of already-on (native) component has leading the open speed and the lowest voltage of touching off fast most in theory. Like this, could protect in endure metric system ultrathin Gate Oxide layer in the Cheng efficient (thickness is smaller than 15Å). IC is under the general normal running, in order to make this kind of already-on (native) component shut off and avoid unnecessary leaking the electric current, the bar of this component needs to add the passway where the bias voltage of a loss shut off the component.

Keywords: already-on (native) component, NMOS, ESD

Table of Contents

封面內頁 簽名頁 授權書..........................iii 中文摘要..............iv 英文摘要.........................v 誌謝.....................vi 目錄...........................vii 圖目錄..........................ix 表目錄....................xi 第一章 諸論 1.1 研究動機....................1 1.2研究目的...........1 1.3論文架構.....................3 第二章 靜電放電防護設計之基本概念 2.1靜電放電的產生..................4 2.2 靜電放電模型..................4 2.2.1 人體放電模式...............5 2.2.2 機器放電模式...............7 2.2.3 元件充電模式...............8 2.2.4 電場感應模式...............10 2.3防護電路概念..................11 2.3.1 防護電路之設計概念............12 2.4防護元件之選用..............16 2.5靜電放電防護電路的實例.............19 第三章 靜電放電主要放電路徑及數學模型 3.1 靜電放電至電感、電容、電阻的簡單模型22 3.2 CR-R 放電模型...........23 3.2.1 暫態分析.................23 3.2.2能量分析..............24 3.3 CR-C 放電模型..................25 3.3.1暫態分析...............26 3.3.2穩態分析.................27 3.3.3耦和雜訊分析...............27 3.3.4能量分析.................28 3.4 CR-L 放電模型...........29 第四章 CMOS靜電放電防護元件 4.1 簡介......................31 4.2元件及其特性分析...32 4.3 Already-on (native)元件的DC特性........33 4.4 TLP(Transmission Line Pulsing)35 4.5元件的ESD 保護單元...............39 4.6全晶片ESD 防護設計...........41 4.7 具有複晶矽二極體的負電壓產生電路........43 第五章 結論與展望.................46 參考文獻.........................47 圖目錄

圖2.1人體放電模式靜電放電電流與時間關係........6 圖2.2人體放電模式等效圖...............6 圖2.3機器放電模式等效圖................7 圖2.4元件充電放電模式等效圖...........9 圖2.5人體放電模式(2KV) 、機器放電模式(200V)和元件充電模式(1KV)放電電流與時間比較圖...........10 圖2.6 全方位靜電放電防護電路..............13 圖2.7異常靜電放電損傷積體電路內部電路的示意圖.....15 圖2.8各種ESD防護元件的I-V特性............18 圖2.9 CMOS積體電路中幾種常見的輸入級ESD防護電路...20 圖3.1 CR-R 模型....................23 圖3.2 CR-R 放電之負載電壓波形..........24 圖3.3 CR-C 放電模型..................26 圖3.4 CR-C 放電模型的負載電壓波形.........28
電之負載電壓電流波形。...

一般元件的詳細結構圖，

一般元件的詳細結構圖。...

(a)一般元件的詳細結構圖，
(b)already-on (native)元件的詳細結構圖。...

防護單元由單一 already-on (native)元件構成，

已一個 already-on (native)元件及一個 FOD 元件所組成...

防護單元由一個 already-on (native)元件與一個 FOD 元件所組成...

利用已有起始導通特性之 already-on 防護單元所形成的全晶片防護電路...

利用複晶矽二極體所構成的負電壓產生電路的電路圖。...

負電壓產生電路在輸入方波後所產生的負電壓值...

人體放電模式(HBM)工業標準及耐壓能力表...

機器放電模式(MM)工業標準及耐壓能力表...

元件充電放電模式(CDM)工業標準及耐壓能力表...

靜電放電規範與防治方法...

各種元件在0.8微米CMOS製程下耐電壓能力之比較...

REFERENCES

