Effects of Oxidizing Agents and Flour Type on the Loaf Volume of Toast

許家愷、張基郁
E-mail: 9511219@mail.dyu.edu.tw

ABSTRACT

The wheat flours (A, B and C) milled from single wheat variety, hard red spring wheat in U.S.A, and collected by the extraction rates (71, 69 and 64%) and referring the ash content were used as material in this study. Firstly, three oxidizing agents, ascorbic acid, azodicarbonamide and glucose oxidase, were selected and added by four dosages (25, 50, 100 and 200 mg/kg) to the flour sample with high extraction rate (Flour A). The dough rheological properties of Flour A, including Farinographic and Extensographic properties and the loaf volume of toast made from Flour A were tested to determine the optimum oxidizing agent and its dosage.

Then, the flours with medium and low extraction rates (Flour B and C) were added with the optimum oxidizing agent and by the optimum dosage, and their dough rheological properties and loaf volumes of toasts were tested. This study is expected to be helpful to raise the utilization of the flour with high extraction rate and to be as references for baking industry.

In the results of proximate compositions and dough rheological properties analyses of the flour samples, crude protein and ash contents increased as the extraction rate increased; the water absorption, mix tolerance index, and arrival time of dough Farinographic properties also increased as the extraction rate increased, however the peak time, departure time, stability, and valorimeter value decreased as the extraction rate increased; the extensibility of the dough Extensographic properties increased as the extraction rate increased, and the resistance and area of the Extensographic properties decreased as the extraction rate increased.

In the results of optimum oxidizing agent and dosage analysis, it is found that the loaf volume of toast made from the flour added with 100 mg/kg glucose oxidase was the largest. The peak time, departure time, stability and valorimeter value of dough Farinographic properties increased as the glucose oxidase was added, which was found more obviously in the flour sample with high extraction rate. The resistance of dough Extensographic properties also increased as the glucose oxidase was added, but the extensibility decreased as the glucose oxidase was added. The loaf volume of toast also increased apparently as the glucose oxidase was added.

In summary, optimum dosage of glucose oxidase can obviously improve the stability of dough rheological properties of the flour of high extraction rate, and increase the loaf volume and acceptability of the toast made from the flour of high extraction rate.

Keywords : Dough rheological properties ; Loaf volume of toast ; Oxidizing agent ; Toast ; Wheat flour

Table of Contents

目錄 封面內頁 簽名頁 授權書 .. iii 中文摘要iv 英文摘要vi 誌謝 ...ix 目錄 ...x 圖目錄...xiv 表目錄...xv 第一章 緒論....................................1 第二章 文獻回顧................................2 2.1 小麥.......................................2 2.1.1 小麥之結構................................2 2.1.2 小麥之製粉................................2 2.2 麵粉.......................................4 2.2.1 麵粉之成份...............................4 2.2.1.1 蛋白質.................................4 2.2.1.2 醣類...................................5 2.2.1.3 酵素...................................5 2.3 麵粉蛋白質與麵筋之形成.....................6 2.4 麼糰之結構與流變性質.......................7 2.4.1 麼糰之形成與結構.........................7 2.4.2 麼糰之流變性質...........................8 2.5 氧化劑對麴糰的氧化作用.....................9 2.6 麼糰物性分析...............................11 2.6.1 麼糰攪拌特性儀(Farinograph)..............11 2.6.2 麼糰伸展特性儀(Extensograph).............14 第三章 材料與方法..............................16 3.1 材料.......................................16 3.1.1 麼粉.....................................16 3.1.2 強筋劑...................................16 3.1.3 藥品.....................................18 3.2 方法.......................................19 3.2.1 一般成分測定.............................20 3.2.1.1 水分...................................20 3.2.1.2 灰分...................................21 3.2.1.3 粗蛋白質...............................21 3.2.1.4 濕筋...................................22 3.2.2 麼糰物性測定.............................23 3.2.2.1 麼糰攪拌特性儀(Farinograph)............23 3.2.2.2 麼糰伸展特性儀(Extensograph)...........24 3.2.3 土司製作及其性質測定.....................25 3.2.3.1 土司製作...............................25 3.2.3.2 土司品質測定............................26 3.2.4 統計分析.................................27 第四章 結果與討論..............................28 4.1 麼粉之基本組成與其麴糰物性..................28 4.1.1 麼粉基本組成分析.........................28 4.1.2 麼粉之麴糰Farinograph特性分析.............30 4.1.3 麼粉之麴糰Extensograph特性分析......33 4.2 不同氧化劑對麴糰物性之影響..................36 4.2.1 添加ascorbic acid之麴粉其麴糰之 Farinograph與Extensograph特性............36 4.2.2 添加azodicarbonamide之麴粉其麴糰之 Farinograph與Extensograph特性............39 4.2.3 添加glucose oxidase之麴粉其麴糰之 Farinograph與Extensograph特性............42 4.3 麴粉經不同氧化劑作用後其土司體積之變化......45 4.4 Glucose oxidase對不同提粉率麴粉之麴糰 物性之影響.......................................45 4.4.1 添加glucose oxidase之不同提粉率麴粉其麴糰