Effect of Addition of Sodium Propionate or Sodium Valerate on Continuous Production of Poly(hydroxybutyrate-co-hydroxyvalerate) by Ralstonia eutropha

ABSTRACT

Polyhydroxyalkanoates, a kind of biodegradable plastics, can be biosynthesized by various microorganisms, and possess physical properties similar to conventional plastics such as polypropylene. Especially, polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) are two polymers frequently brought much attention. Ralstonia eutropha can produce PHB with a simple carbon source. For instance, glucose can be used as a sole carbon source to produce PHB. If organic acidic substrates, such as sodium propionate and valerate, are used to be the second carbon source, R. eutropha can produce PHBV. However, if the concentration of sodium propionate or valerate is too high, the microbial growth of R. eutropha may be restrained.

In this study, PHB(V) was produced by R. eutropha (ATCC 17699; BCRC 13036) that was cultivated in a continuous fermenter in a phosphorus-limiting condition. The major carbon source was glucose (20 g/L), the nitrogen source was (NH4)2SO4 (10 g/L) and the phosphorous sources included Na2HPO4 (0.1 g/L) and KH2PO4 (0.2 g/L). At 30 ℃, PHB was biosynthesized by R. eutropha with a concentration of 2.19 g/L which was about 33% of the total biomass. As the carbon substrate was depleting, the biomass increased a little, but the PHB was decreasing. In the other two experiments, the second carbon source (sodium propionate or valerate) was added in the feed in order to produce PHBV. When the medium containing 5 g/L sodium propionate, PHBV (containing 47% HV and 53% HB) was biosynthesized with a concentration of 1.61 g/L, and was about 25.9% of the biomass (5.94 g/L). When the medium containing 5 g/L sodium valerate, PHBV (containing 47% HV and 53% HB) was biosynthesized with a concentration of 1.61 g/L, and was about 25.9% of the biomass (5.94 g/L).

Keywords: PHBV; Ralstonia eutropha; phosphorus-limiting condition; continuous fermenter; sodium propionate; sodium valerate; dilution rate

Table of Contents

Cover page 1 Signature page 2 Permission page 3 Chinese summary iv English summary vi Gratitude viii Contents x Table of contents xiii Figure list xv Symbol list xvii Chapter 1 Introduction 1
Chapter 2 Literature review 3
Chapter 3 Materials and methods 30
Chapter 4 Results and discussion 46
Chapter 5 Conclusion and future direction 79

REFERENCES


