ABSTRACT

Abstract This study investigated the practicability for reusing the residues as an additive in tire from the pyrolysis of plastics in waste computer monitor. The properties of steam activated residues were determined to provide the useful data for other utilizations. This study includes three parts: 1. Analyzing the physical properties of solid product residues from the pyrolysis of the plastic in waste computer monitor. 2. Analyzing the physical properties of steam activated residues. 3. Evaluating the practicality for reusing the residues from the pyrolysis of plastics in waste computer monitor. The percentages of solid products were 14.74% and 9.54% for the pyrolysis temperature of 375 and 425℃, respectively. The residues decreased with increasing pyrolysis temperature. For the elemental analysis, the percentages of C were above 80%. S and O were not observed in the residues. Comparing with commercialized carbon black, the specific surface area and porous from the pyrolysis of waste plastic were smaller than those of carbon black. Investigating the results of the elemental analysis, there was about 5% H in the residues. It revealed that the hydrocarbons remained in the residues resulted in a small specific surface area and pore size. The residues obtained from the pyrolysis temperatures of 375 and 425℃ were activated with steam. The results indicated that the average weight losses were 25.9-50.52% and 4.97-11.47%, respectively. One noted that the rate of weight loss decreased with increased the activating temperature. This might be ascribed to the further reaction of hydrocarbon in the residues. After activating, the pore size of residues varied inversely with activating temperature. The pore size of residues after activating at 600℃ was close to that of commercialized carbon black (N330). Also, the specific surface area and the total pore volume increased with activating temperature. The specific surface area and the total pore volume obtained from steam activated residues were smaller carbon black. Finally, we discussed the effects of the ratios of additives on the properties of the tire sample. The result indicated that the physical properties of steam activated residues is better than those of residues without steam activation. For the hardness analysis, the effects of the addition of additives obtained at different activating temperatures on the hardness of tire was insignificant.

Keywords : waste computer, pyrolysis, carbon black, tire.

24. 方明譯,輪胎膠料中各種材料的相互作用 , 台灣區橡膠工業同會, 2003。

25. 王月英,橡膠業產業調查與技術,第 144期,交通銀行徵信處, 2003。

26. 楊承哲,活性團聯合聚合物接枝包覆碳黑之奈米複合微粒的合成、性質與溶劑中分散特性，國立台灣大學化學工程學研究所碩士學位論文 (2002)。

27. 賴耿陽編著,碳材料化學與工學,復漢出版社,1990。

28. 謝立生,碳黑物性與應用入門,高分子工業,高分子工業雜誌社,1998。

29. 謝建德,活性碳孔隙結構與製備條件對液相吸附的影響,中原大學化學工程學系研究所碩士論文 (2001)。