Annually, thousands of unprotected pedestrians are killed or suffer serious injuries in accidents with moving vehicles. Numerous automobile organizations have researched on pedestrian safety. Many approaches have been developed. The European Enhanced Vehicle-safety Committee (EEVC), Working Group 17 (WG17) proposed three component subsystem tests, a passive method, to evaluate the friendliness of vehicle to pedestrian: the legform to bonnet test, the upper legform to bonnet leading edge test, and the headform to bonnet top test. So far, this method has been developing. The first objective of this study is to build the EEVC/WG17 pedestrian impactor models, including child headform, adult headform, upper legform, and legform. Then, EEVC/WG17 regulations are used to validate these models. The second objective is to use validated models to evaluate the frontal structure of a specific vehicle to see if it passes EEVC/WG17 safety requirements. Also, from simulations, some comments about vehicle frontal structure that cause pedestrian injury in car-pedestrian accidents were drawn out. The third objective is to redesign some areas of a vehicle (engine room and bumper) that would affect pedestrian injury to investigate its structure. All simulations were performed through LSDYNA3D. The FE pedestrian impactors built in this study can be used to evaluate pedestrian safety of FE vehicle models during designing as well as available ones. Moreover, the suggestions drawn out from simulation results can help vehicle manufacturers with vehicle design that would be safer to pedestrian.

Keywords: pedestrian safety; subsystem test; pedestrian impactor

目錄
6.1. Conclusions

6.2. Further studies

REFERENCES

5. Transport Canada http://www.tc.gc.ca/roadsafety/tp2436/rs200401/menu.htm

9. Alessandro Zanella, Francesco Butera, Enrico Gobetto, Centro Ricerche - Smart Bumper for Pedestrian Protection - FIAT, Italy

10. Lex van Rooij, Mark Meissner, Kavi Bhalla, Jeff Crandall, Yukou Takahashi, Yasuhiro Dokko, Yuji Kikuchi - The Evaluation of the Kinematics of the MADYMO Human Pedestrian Model Against Experimental Tests and the Influence of a More Biofidelic Knee Joint – ESV Conference

13. Pedestrian Protection – FORSCHUNGSGESELLSCHAFT KRAFTFAHRWESEN mbH AACHEN www.fka.de

15. Yong Ha Han, Young Woo Lee - Development of a Vehicle Structure with Enhanced Pedestrian Safety – SAE 2003-01-1231

17. Atsuhiro Konosu, Masaaki Tanahashi - Development of a Biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI 2003) – IHRA/PS 27

18. Jikuang Yang - Crash Analysis, The Pedestrian Accident Reconstruction - Department of Machine & Vehicle Systems, Chalmers University of Technolog, SE-412 96 Goteborg, Sweden

20. Pedestrian Impact test subsystem www.aries-ingenieria.com

21. Tetsuo Maki, Toshiyuki Asai - Development of Pedestrian Protection Technologies for ASV - JSAE20024256

22. Atsuhiro Konosu, Karima, Tsukuba, Ibaraki - Reconstruction Analysis For Car–Pedestrian Accidents Using a Computer Simulation Model - JSAE20024257

23. FHWA/NHTSA National Crash Analysis Center-The George Washington University www.ncac.gwu.edu/vml/models.html