Analysis of Coupling Calibration for Electric Field Probe Applied to SAR Measurement Using Adjustable Open-ended Waveguide

Yue-Yi Tong, Lin Han-Nien
E-mail: 9510177@mail.dyu.edu.tw

ABSTRACT
In the recent years, Specific Absorption Rate (SAR) has become an important issue concerning health hazard due to the rising usage of wireless communication technologies. The measurement system mostly used the E-Probe to measure the SAR values. However, the usage of the E-Probe will gradually degrade in term of precision and accuracy. Since, to date, there exists no Laboratories in this country to perform the calibration, it would be of interest to design such a calibration scheme. The implementation of the local calibration will not only save time but also the huge expenses of sending the E-Probe to the original manufacturer for recalibration. In this thesis, to design of system for the calibration of SAR probe is carried not under two environments, namely, in air and tissue. A waveguide operating in the desired calibration frequency was designed. The fabricated waveguide was constructed with an adjustable short-circuited termination. For the calibration in air, the E-Probe was placed in the center of the waveguide aperture and gradually extended inwardly. To record the measured SAR values. However, when calibrating in the tissue equivalent-liquid, a Teflon container filled with the tissue equivalent liquid was placed on the top of the interior of the waveguide. The E-Probe was then positioned in the center of the Teflon container and raises the E-Probe from the bottom of the container slowly. In this study, we have utilized electromagnetic numerical simulation method to compare the measurement values to verify the accuracy of the result. We focused on the analysis and comparison related to the E-field distribution at 900MHz and 1800MHz.

Keywords: SAR, waveguide, E-Probe, tissue equivalent liquid

Table of Contents
目錄 封面內頁 簽名頁 授權書.........................iii 中文摘要..............iv 英文摘要........................v 請謝...................vi 目錄..........................vii 圖目錄........................ix 表目錄........................xii 第一章 緒論......................1 1.1 前言................... 1 1.2 研究動機及方法...............2 1.3 論文架構.................4 第二章 基本波導理論..................5 2.1 簡介....................5 2.2 沿著均勻波導管傳播的一般波動特性......6 2.2.1 橫向電磁波..............11 2.2.2 橫向電波............13 2.2.3 橫向磁波...............17 2.3 矩形波導管...........23 2.3.1 矩形波導管內之TM波..........23 2.3.2 矩形波導管內之TE波..........27 2.3.3 矩形波導管之衰減...........34 第三章 人體電磁波能量吸收率概論............38 3.1 人體電磁波能量吸收率(SAR)簡介......38 3.2 SAR量測系統................42 3.3 SAR量測要求................43 第四章 SAR測試探棒特性之模擬與實測..........47 4.1 Open-ended 波導管製作............49 4.1.1 波導管設計架構與原理.........49 4.1.2 波導管的實體與模擬尺寸........50 4.2 900MHz及1800MHz波導管的實測與模擬....54 4.2.1 900MHz波導管的實測與模擬.......54 4.2.2 1800MHz波導管的實測與模擬......56 4.3 SAR-Probe之特性校正分析......57 4.3.1 SAR-Probe在自由空間中之校正.....58 4.3.2 SAR-Probe在組織液中之校正......63 第五章 結論......................74 參考文獻.......................

REFERENCES
[3] 鐘欣翰, "SAR測試探棒特性校正之研究與設計"。
IEEE std1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

