模糊類神經模型的結構學習與參數學習

Thanh, Nguyen Minh、陳木松

摘 要

The typical design steps of neuro-fuzzy inference systems include structure identification and parameter estimation. Structure identification concerns with the partition methods in input and output spaces, the number of fuzzy membership functions, the number of fuzzy rules, and so on. On the other hand, parameter estimation involves determining the parameters of premises and consequents of fuzzy rules. In this thesis, we propose a multi-layered multi-input-multi-output generalized fuzzy inference system (GFIS), which combines the complementary advantages of the Mamdani and TS fuzzy models for applications of system modeling and pattern classification. The algorithms for on-line structure learning and parameter learning are developed to optimize the system performance. There are several novelties in the proposed model. (1). The input space is partitioned by cluster-oriented methods. The clustering approach results in multi-dimensional membership functions (or clusters) and the obtained membership functions are projected to each dimension to form the premise part of fuzzy rules. (2). The consequent part in each rule can represent multiple outputs. Therefore, in classification problems each rule can represent more than one class with different probabilities. The obtained fuzzy classifier can be considered as an extension of the quadratic Bayes classifier that utilizes mixture of models for estimating the class conditional densities. (3). The suggested on-line structure learning method can not only determine the number of rules automatically but also merge or reduce unnecessary fuzzy rules. Consequently, the GFIS can decrease computational burden, learn faster, and consume less memory in the stage of parameter estimation. To investigate the efficiency and effectiveness of the proposed model, several benchmark problems involving nonlinear dynamic system identification and pattern classification are carried out. In these applications, the GFIS shows its superiority in terms of parsimonious of rule structure, higher correct classification rate, learning accuracy, fast convergence, and robustness. Furthermore, several practical examples including Synthetic Aperture Radar (SAR) image classification, TRMS control problems, and image denoising, are also illustrated.

關鍵詞 : Neuro-fuzzy, Structure identification, Parameter estimation, Mamdani model, TS model, Structure and parameter learning

目錄

COVER CREDENTIAL AUTHORIZATION LETTERS..iii
ABSTRACT (CHINESE)...iv
ABSTRACT (ENGLISH)..v
ACKNOWLEDGMENT...vii
TABLE OF CONTENTS...viii
TABLE OF FIGURES..xi
LISTS OF TABLES..xiv
Chapter I INTRODUCTION...1
 1.1 Introduction...1
Chapter II BLACK BOX MODELING AND NEURO-FUZZY SYSTEM...............4
 2.1 Introduction...4
 2.2 Sigmoid basis functions (and hyperbolic tangent)...........8
 2.3 Radial basis functions....................................11
 2.4 Fuzzy basis functions.....................................13
 2.5 Neuro-fuzzy system..20
Chapter III PARAMETER LEARNING...................................24
 3.1 GFIS model (Generalized Fuzzy Inference System)...........24
 3.2 Structure learning..27
 3.2.1 Grid-partitioning (Fig 3.3(a))......................28
 3.2.2 Tree partitioning (Fig 3.3(b))......................28
 3.2.3 Scatter partitioning (Fig 3.3(c))...................29
 3.3 Parameter learning..31
 3.3.1 Least squares estimation............................33
 3.3.2 Gradient descent learning...........................34
Chapter IV STRUCTURE ESTIMATION...................................37
 4.1 Introduction..37
 4.2 Input Partition...39
 4.2.1 Fuzzy C-Means (FCM).................................40
 4.2.2 Gath-Geva clustering algorithm (gg-clustering)......41
 4.3 Correlation Analysis......................................42
 4.4 Cluster separation..43
 4.4.1 Input membership functions nearest neighbor.........43
 4.4.2 Output membership functions nearest neighbor........45
 4.5 Fuzzy Similarity Measure..................................46
 4.6 Negligible & Overlapping Cluster Combination..............49
Chapter V SIMULATIONS...51
 5.1 Structure Learning..51
 5.1.1 Identification Problem : Chaotic Mackey-Glass.......51
 5.1.2 Classification Problem : Iris data..................55
 5.2 Parameter Learning..56
 5.2.1 Identification Problem : Box Jenkins................56
 5.2.2 Classification Problem : Handwritten character problem ..58
 5.2.3 Image Processing....................................59
 5.2.3.1

Janos Abonyi and Ferenc Szeifert, “Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers,” University of Veszprem, Dep. of Process Engineering, P.O. Box 158, H-8201, Hungary

