In this study, the degrading high-methoxyl-group-pectin and low-methoxyl-group-pectin solutions (DHMGPS and DLMGPS, respectively) by using pectinase treatment were prepared to immerse tomato seeds of Lycopersicun esculentum and to spray the growing tomato off-springs. The effects of DHMGPS, DLMGPS and WS (only water solution) treatments on the germination and growth of tomato seeds and off-springs, and the wilt-disease-resistance of the tomato plants to Pseudomonas solanacearum were investigated in the greenhouse. The highest value of the seed germination rate, of the plant growth height, and of the cotyledon quantity was obtained from the results of this experiment for DLMGPS, DHMGPS, and WS treatments, respectively. The effect of the pectin-degrading solutions on the yellow-colored leaves of the tomato plants during the off-springs period was in following order: DLMGPS > DHMGPS > WS treatments. From the results of the wilt-disease-resistance of the tomato plants to Pseudomonas solanacearum, all the tomato plants for WS treatments were withered and totally dead during three days and one week, respectively, after the infection of the bacterial wilt. There was no fruit for WS treatments in one week after bacterial infection. The percentage of the withered tomato plants for DHMGPS treatments was 50% and 80% at the second and third week, respectively, after the bacterial infection. There were a few fruits for DHMGPS treatments after bacterial infection. The color of the leaves of the no-withered tomato plants for DLMGPS treatments was green during three weeks after bacterial infection. At the beginning of the fourth week after bacterial infection, there were the bright red-colored fruits with large size to result for DLMGPS treatments. The amount of the tomato fruits for DLMGPS treatments was higher than that for the DHMGPS treatments.

Keywords : Degrading methoxyl-group-pectin solution; Lycopersicun esculentum; Pseudomonas solanacearum

Table of Contents

第一章 緒論.................................... 1
第二章 文獻回顧................................ 5
2.1蕃茄之介紹.................................. 5
2.2蕃茄之生長習性.............................. 5
2.2.1低溫寒害引起果實生理劣變之症狀............ 6
2.2.2蕃茄的病害................................ 8
2.3果膠之介紹.................................. 10
2.3.1果膠的分類................................ 10
2.3.2果膠的性質................................ 11
2.3.3果膠的抗菌性.............................. 13
第三章 材料與方法.............................. 20
3.1前言.. 20
3.2材料與方法.................................. 22
3.2.1實驗材料.................................. 22
3.2.2儀器設備.................................. 25
3.2.3培養方法.................................. 26
3.3實驗方法.................................... 26
3.3.1發芽試驗.................................. 26
3.3.2抗病害試驗.............................. 28
3.3.3促進結果試驗.............................. 28
3.3.4促進結果試驗.............................. 29
3.3.5結果後熟促進試驗........................ 30
第四章 結果與討論.............................. 31
4.1提高發芽率結果與討論........................ 31
4.2甲氧基果膠噴灑蕃茄抗青枯病之結果與討論...... 34
4.3高低甲氧基果膠對蕃茄結果之影響.............. 34
4.4抗凍害實驗結果之討論........................ 49
5.5果實後熟促進結果與討論...................... 49
第五章 結論.................................... 64

REFERENCES

