Continuous Cultivation of Tetraselmis chui in Photobioreactor Using Sodium Carbonate and Sodium Bicarbonate as Carbon Sources

Abstract
Continuous cultivations in a light/dark dual-tank photobioreactor were conducted to study the effects of culture conditions on the growth of Tetraselmis chui using sodium bicarbonate as the carbon sources. The solution of sodium bicarbonate was used to simulate the alkaline solution after absorbing carbon dioxide. The main results and conclusion are as follows:

1. Effects of the concentrations of sodium bicarbonate on the growth of Tetraselmis chui During the continuous cultivation, the biomass concentration of Tetraselmis chui was almost unaffected by changing the concentration of sodium bicarbonate in the feed tank from 3g/L to 10g/L. The biomass concentration and the specific growth rate were 0.245g/L and 0.053h⁻¹, respectively, in the light tank and those were 0.174g/L and 0.039 h⁻¹ in the dark tank. The pH in culture was lower with the higher concentration of sodium bicarbonate in the feed tank.

2. Effects of light intensities on the growth of Tetraselmis chui It was shown that the biomass concentration of Tetraselmis chui was unaffected as the light intensity increased from 30000Lux to 50000Lux. The light intensity of 30000Lux was identified in the light saturation region. Further cultures were conducted at the intensity of 30000Lux.

3. Effects of dilution rates on the growth of Tetraselmis chui The effects of dilution rates on the growth of Tetraselmis chui were performed with the dilution rate in the range from 0.033 to 0.099h⁻¹. The specific growth rate in the light tank and the specific respiration rate in the dark tank increased as the dilution rate increased, while the pH of the culture decreased. However, the relationship between the specific growth rate and the specific respiration rate was not a linear one.

4. Effects of aeration on the growth of Tetraselmis chui Aeration in the continuous cultivations of Tetraselmis chui not only lowered the dissolved oxygen, but also the biomass concentration. Aeration had a negative effect on the growth of Tetraselmis chui.

Keywords: carbon dioxide; light/dark dual-tank photobioreactor; carbon sources

Table of Contents
第一章 序論
第二章 文獻回顧
第三章 實驗材料與方法
第四章 實驗結果與討論
第五章 結論與建議

References
1. 叶育材, 1982, 光合植物生产力的生理基础作用, 国立编译馆, 台北。
2. 林安秋, 1984, 作物之光合作用, 台湾商务印书馆股份有限公司, 台北。
3. 江漢全, 1996, 水质分析, 三民书局股份有限公司, 台北。
4. 陈俊兴, 1996, 利用海洋为微藻生产ω-3族系之多元不饱和脂肪酸, 大叶大学食品工程研究所硕士论文, 彰化。
5. 吴文雄, 1996, 藻类培养之反应器设计及操作, 国科会专题研究计划成果报告, 新竹。
6. 张义宏, 2001, 利用本土性小球藻固定二氧化碳之技术开发, 台湾大学农业化学研究所博士论文, 台北。
7. 陈文雄, 2002, 整合储液吸收及光合作用以固定二氧化碳, 大叶大学环境工程研究所硕士论文, 彰化。

“Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon Engineering Journal Volume:14, Issue: 1, April, pp. 51-65. 73. Horiuchi, Jun-Ichi; Ohba, Ichigaku; Tada, Kiyoshi; Kobayashi, Masayoshi; Kanno, Photobioreactor studies in fed-batch culture”, Enzyme and Microbial Technology 31,1015-1023. 72. Li, Jian; Xu, Ning Shou; Su, Wei Wen,


Worapannee; Powtongsook, Sorawit; Pavasant, Prasert, 2005, “Optimal growth conditions and the cultivation of Chaetoceros calcitrans in airlift

Design and performance”, Chemical Engineering Science Volume: 56, Issue: 8, April, pp. 2721-2732. 68. Krichnavaruk, Sontaya; Loataweesup,

J.M. Fernandez; Sanchez Perez, J.A.; et. al., 2001, “Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of

Retze, Axel; Schmid-Staiger, Ulrike; Trosch, Walter, 2001, “A novel airlift photobioreactor with baffles for improved light utilization through the

semicontinuous mode”, International Biodeterioration and Biodegradation Volume: 47, Issue: 3, pp. 151-155. 66. Degen, Jorg; Uebele, Andrea;


J.M. Fernandez; Sanchez, J.L. Garcia; et. al., 2003, “Analysis of photobioreactors for culturing and cyanobacteria via an advanced diagnostic

Biomolecular Engineering Volume: 20, Issue: 4-6, July, pp. 115 – 123. 62. Luo, Hu-Ping; Kemoun, Abdenour; Al-Dahhan, Muthanna H.; Sevilla,


integrated solar and artificial light system for internal illumination of photobioreactors”, Journal of Biotechnology Volume: 70, Issue: 1-3, April

82. James C. Ogbonna, Hirokazu Yada, Hiroyuki Masui, and Hideo. Hiroyo matsumoto, Norio shioji and Akihiro hamasaki, 1996, "Basic study on optimization of Raceway-Type algal cultivator".


84. Watanabe, Yoshitomo; Hall, David O., 1996, "Photosynthetic CO2 conversion technologies using a photobioreactor incorporating microalgae - energy and material balances –", Energy Conversion and Management Volume: 37, Issue: 6-8, June 8, pp. 1321-1326.

