ABSTRACT

Network processors are mostly designed in SOC architecture. To hasten the design schedule and retain flexibility, network protocols are often implemented in software. Considering this, design optimization is no longer an isolated issue but collaboration between hardware and software. In general, modern micro-architecture design relies on dynamic instruction traces to provide necessary information for design optimization. One of the drawbacks of dynamic instruction traces is it generates massive data that make it difficult to process and store. This thesis proposes a novel profiling scheme and a dynamic instruction profiling algorithm that called Melting. Using the proposed profile scheme, the profiling is done in hierarchy that reduces the data generated. The proposed profiling scheme will also extract the most frequent and longest instruction sequence. The extracted sequence is used in optimizing memory hierarchy. The SimpleScalar ARM 4.0 simulator with Dijkstra benchmark form MiBench is setup to verify our profiling scheme.

Keywords: Network processors; trace; profiling; SimpleScalar; Dijkstra


"Dijkstra's algorithm.", http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


探矽工作室, 2002嵌入式系統開發聖經, 學貫行銷股份有限公司, 2002年 6月。

探矽工作室, 嵌入式系統導論, 學貫行銷股份有限公司, 2004年 5月。

Kurt Wall, William von Hagen 著, 鄧偉敦 譯, GCC完全指南, 博碩文化, 2005年 4月。