ABSTRACT
As result of the development of technology and consumers' demands, the designs of new products become smaller and lighter, also the fully functional outfits are equipped. In addition, due to the prosperity of environmental protection, the lightness of transportation vehicle, reducing the emission of pollution, and the consideration of increasing the fuel efficiency, the use of lightening material gradually attracts attentions nowadays. In recent years, the prosperity of information industry has leaded to the significant use of light-materials which mainly refer to magnesium, aluminum and titanium. Among these materials, magnesium alloys will be the dominated material because of its excellent characteristics including low specific density, high specific strength and rigidity, good thermal conductivity, high damping capacity and electromagnetic interference, etc. However, magnesium alloys exists high activity, low electrochemical potential behaviors which will oxidize easily. It is necessary applying appropriate surface treatment to prevent corrosion. In this study, AZ91D magnesium alloy is used as experimental material. Meanwhile, permanganate and phosphate conversion coatings, which are widely used for surface treatment in industries, are adapted to have fundamental discussions. The operation parameters studied included the solution temperature and immersion time, used OM, SEM (EDS) and XRD to observe the surface morphology of coatings and analyze the chemical composition. Normally, products would follow-up coating after conversion treatment, thus, conversion coating plays the role of corrosion resistance in a short time. In the last, using adhesives to do the adhesion test and obtain the shear strength of conversion coatings directly. Obeying these data, we can judge the capability of adhesion and wear resistance. From experimental results shown that the surface cracks of permanganate conversion coatings were amorphous, and the thickness and weight increased with increasing immersion time. However, the coating of phosphate conversion is non-crystal layers and randomly distributed. The size of surface product grows with immersion time increased and the morphology without change apparently. In the aspect of shear strength, at 60℃ and 80℃ permanganate conversion specimens, the coating strength increased after 10 minute immersion time which is due to the dense MgO structure formation. However, in phosphate conversion treatment, the strength do not show apparently changed under various operation conditions. The fracture surface always occurs between adhesives and base metal or at the interface of adhesives and coatings. Overall, the non-crystal phosphate conversion coating exist better shear strength than permanganate coating. This result illustrate phosphate coating with regard to follow-coating layer has better adhesion ability, also can provide better corrosion resistance protection.
實驗規劃..34 3.3 實驗步驟..35 3.4 試片準備與前處理..36 3.5 化成皮膜處理液調製..37 3.5.1 錳酸鹽化成液...37 3.5.2 磷酸鹽化成液...37 3.6 化成皮膜處理製程..38 3.7 表面粗糙度的量測..40 3.8 化成皮膜試片表面色澤..40 3.9 膠接化成皮膜試片..41 3.10 化成皮膜膠接剪強度試驗..43 3.11 檢視皮膜試片之掃描電子顯微鏡及X光繞射分析儀.........................44

第四章 實驗結果分析與討論...45 4.1 化成皮膜表面色澤觀察..46 4.2 化成皮膜試片表面形態之SEM觀察...49 4.2.1 錳酸鹽皮膜表面形態之觀察..49 4.2.2 磷酸鹽皮膜表面形態之觀察..52 4.3 錳酸鹽及磷酸鹽皮膜粗糙度值量測..54 4.4 錳酸鹽及磷酸鹽化成皮膜厚度量測..55 4.4.1 錳酸鹽化成皮膜厚度量測..55 4.4.2 錳酸鹽化成皮膜厚度量測..56 4.5 錳酸鹽及磷酸鹽化成皮膜重量量測..58 4.5.1 錳酸鹽化成皮膜重量量測..58 4.5.2 磷酸鹽化成皮膜重量量測..59 4.6 錳酸鹽皮膜試片膠接剪強度試驗..61 4.7 錳酸鹽皮膜成份分析(EDS)...66 4.8 錳酸鹽皮膜結構分析(X-ray)...69 4.9 磷酸鹽皮膜成份分析(EDS)...75 4.10 錳酸鹽皮膜試片膠接剪強度試驗..78

第五章 結論...83 參考文獻..86

REFERENCES
[1] 蔡幸甫, "輕金屬產業發展現況及趨勢", 工業材料雜誌, 第198期, pp.72~80, 2003。
[8] Hingwei Huo, Ying Li and Fuhui Wang, "Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer", Corrosion Science, pp. 1467 ~1477, 2004。