壓電能量汲取系統的實驗評估
陳勁豪、羅正忠

摘要
能量汲取即是在週遭的能量取得並將其轉換成可用的電能。壓電材料為一機電偶合材料，可對其施加機械應變能量使其轉換成電能，反之對其施加電位能可使其轉換成機械應變能。而利用壓電材料將週遭系統的振動能量轉換成電能即為壓電能量汲取系統。本論文的目的是為了瞭解壓電能量汲取系統的特性。基於上述的目標，將研究的課題區分為以下部分：
1. 壓電電能特性及特性預測
2. 設計壓電能量汲取系統參數
3. 壓電能量汲取系統結構設計以及
4. 以實驗量測的方法，觀察及探討當壓電能量汲取系統的參數包括施力強度、壓電元件黏貼位置、壓電元件型式、壓電材料等影響能量汲取效率的影響。

關鍵詞：壓電能量汲取系統、整塊壓電材料與指叉式電極複合元件、壓電纖維複合材料

目錄
第一章 綱論
1.1 研究背景
1.2 壓電性質
1.3 國內外研究情形
第二章 壓電能量汲取系統設計與分析
2.1 基本壓電電能特性分析
2.2 設計壓電能量汲取系統參數
2.3 壓電能量汲取系統結構設計
第三章 結構模態實驗量測與分析
3.1 壓電平板結構的結
3.2 壓電平板動態特性對壓電元件電能轉換的影響
第四章 壓電能量汲取系統參數實
4.1 施加外力的大小
4.2 壓電元件黏貼位置
4.3 壓電元件型式
4.3.1 三種壓電元件電流量測
4.3.2 三種壓電元件電流量測
4.3.3 三種壓電元件輸出功率分析
第五章 結論與未來工作

參考文獻


