自持性燃燒合成鈷鋁、鈷鈦與鈦矽介金屬之研究

葉奇璋、葉俊良

E-mail: 9419559@mail.dyu.edu.tw

摘要
本研究係以自持性燃燒合成法（Self-Propagating High-temperature Synthesis, SHS），在氬氣環境下進行燃燒合成之鈷鋁 (CoAl)、鈷鈦 (CoTi) 及鈦矽 (Ti-Si) 介金屬。其研究包含了兩大部分；第一部分探討鈷鋁及鈷鈦試片在不同的最大理論密度 (Maximum Theoretical Density, MTD) 和不同的預熱溫度 (Preheating Temperature) 對其火焰鋒面傳遞模式、火焰鋒面傳遞速度 (Flame-Front Velocity)、產物轉換率以及產物密度之影響。第二部分則研究各種莫爾比例的鈦矽介金屬，觀察其燃燒合成之產物並探討不同比例對其燃燒溫度及火焰傳遞速度的影響。而第一部分的實驗結果發現兩種材料之燃燒鋒面皆以一個平整的形式向下傳遞，另外鈷鈦燃燒反應有二次燃燒的現象。當鈷鋁及鈷鈦試片的理論密度越大時，火焰鋒面傳遞的速度也越速加快；而在鈷鈦系統中，當預熱溫度越高時其火焰鋒面速度有增快的趨勢，而在鈷鋁系統中，預熱溫度及粉末粒徑大小只有在較低的試片密度條件下之影響才較為顯著。而產物轉換率方面，經由 X 光粉末繞射分析 (XRD) 發現鈷鋁及鈷鈦的產物轉換率都接近 100%。而根據實驗數據之燃燒溫度及火焰鋒面速度可歸納出鈷鈦介金屬 (CoTi) 反應之活化能為 121.69 kJ/mol，鈷鈦介金屬 (CoAl) 為 67.95 kJ/mol。而第二部分的實驗為觀察不同比例的燃燒特性，而由燃燒方 面觀察，每種比例的鈦鈦介金屬皆以一平整的火焰鋒面向下傳遞，而在試片密度較低時，燃燒鋒面過後會有噴濺的現象；由燃燒溫度觀察，除了 Ti:Si = 1:0 之外，大部分的組態皆超過鈦鈦共熔溫度 1330 ℃；而火焰鋒面速度在組態為 Q: Q: Q 及 Q: 最快，大約為 50~60 mm/s 左右，而比例為 Q: Q 最慢，約為 3~5.3 mm/s 左右。所以可推斷比例為 Q: Q 之燃燒鋒面是以固相與固相間反應為主，所以傳遞速度較慢；而組態為 Q: Q: Q 及 Q: Q 反 應時會產生共熔液，所以燃燒鋒面則以液相與固相間反應為主，所以傳遞速度稍快。而 Q: Q 之體轉化率為複雜，其中組態為 Q: Q: Q 及 Q: Q 產物轉化最好，皆可生成 Ti5Si3，其次為組態 Q: Q: Q，其主 要生成物為 Ti5Si4，而組態 Q: Q 及 Q: Q 則會同時生成兩者或兩者以上的介金屬 (Ti5Si3、TiSi2)。而根據火焰鋒面傳遞速度與燃燒溫度之結果，可推斷鈦矽介金屬 (Ti-Si) 為 205.21 kJ/mol。關鍵詞：自持傳遞高溫合成；鈷鋁介金屬；鈦矽介金屬

目錄

簽名頁 授權書 .. iii
中文摘要 .. v
英文摘要 .. vii
誌謝 ... ix
目錄 ... xi
圖目錄 .. xiii
表目錄 .. xv
附錄 ... xvi
符號說明 .. xvii

第一章 緒論 ... 1

第二章 實驗方法與進行步驟 ... 9

第三章 結果與討論 ... 13

第四章 結論 ... 25

參考文獻.. 28

參考文獻

