ABSTRACT

In recent years, the CMOS integrated circuits technology has been successfully applied to many systems. In order to provide enough power for portable devices, the low voltage and low power circuits would be the trend for current CMOS IC design. Pulse-Width Modulation (PWM) techniques have been widely used in power electronic products. The design and implementation of a DC-DC buck converter for low supply voltage electronic system is presented in this paper. With high power conversion efficiency, this design can be applied to portable electronic products such as mobile phone, digital camera, PDA, etc. This chip is fabricated with TSMC 0.35μm 2P4M 3.3V Mixed Signal CMOS technology through CIC. The size of this chip is 343.7μm x 325μm. The design contents of this paper include: introduction, development and motivation in recent research, principle and structure, circuit, simulation and result, conclusion and references. This paper will provide a survey of related literature and discuss the distinct phenomena in different modulation regions. Simulation results and experimental results will be provided to verify the performance of the proposed strategies.

Keywords: pulse-width modulation (PWM); buck converter; mixed signal CMOS technology

Table of Contents

- Cover page
- Signature page
- Authorization document
- Chinese abstract
- English abstract
- Acknowledgments
- Table of contents
- List of figures
- List of tables

1. **Chapter 1: Introduction**
 - 1.1 Study background
 - 1.2 Research motivation
 - 1.3 Design process
 - 1.4 Design content and paper framework

2. **Chapter 2: Buck Converter Principle and Structure**
 - 2.1 Introduction
 - 2.2 DC-DC Converter Control
 - 2.3 Buck Converter
 - 2.4 Output Voltage Ripple

3. **Chapter 3: Operational Amplifier Principle and Structure**
 - 3.1 Division Circuit
 - 3.1.1 Resistance and MOSFET Division
 - 3.1.2 Transistor Divider
 - 3.2 Current Source Self-Biasing
 - 3.2.1 Traditional Fixed Conduction Bias Circuit
 - 3.3 CMOS Operational Amplifier
 - 3.4 CMOS Two-Stage Operational Amplifier
 - 3.4.1 Amplifier Gain
 - 3.4.2 Amplifier Frequency Response
 - 3.4.3 Amplifier Roll-off
 - 3.5 Two-Stage Operational Amplifier Design Process
 - 3.5.1 Differential Pair Input Gain Amplifier Design
 - 3.5.2 Bias Circuit Design
 - 3.5.3 Output Stage Design
 - 3.5.4 Other Design Considerations

4. **Chapter 4: Comparator Principle and Structure**
 - 4.1 Introduction
 - 4.2 Delays Comparator
 - 4.3 Comparator Circuit Models
 - 4.3.1 Bias Circuit
 - 4.3.2 Output Stage

5. **Chapter 5: Oscillator Principle and Structure**
 - 5.1 Introduction
 - 5.2 Ring Oscillator General Considerations
 - 5.3 Voltage-Controlled Oscillator Design Focus and Operation Principle

6. **Chapter 6: Bandgap Reference Circuit Principle and Structure**
 - 6.1 Introduction
 - 6.2 Supply Voltage-Independent Bias (Reference Current Source)
 - 6.3 Temperature-Independent Reference (Reference Voltage Source)
 - 6.3.1 Compatibility with CMOS Technology
 - 6.3.2 Operational Amplifier Offset and Output Resistance
 - 6.3.3 Feedback Impedance
 - 6.3.4 Bandgap Reference Voltage
 - 6.3.5 Supply Voltage Relatedness and Starting Action
 - 6.4 PTAT Current Source
 - 6.5 Constant Voltage Source
 - 6.6 Speed and Noise Issues
 - 6.7 Design Techniques
 - 6.7.1 Startup Circuit
 - 6.7.2 Energy Gap Voltage Source
 - 6.7.3 Internal Operational Amplifier and Drift Voltage Effect
 - 6.7.4 Drift Voltage Elimination Methods

7. **Chapter 7: Circuit Implementation and Layout Considerations**
 - 7.1 Analog Wiring Techniques
 - 7.2 Folded Finger Transistors
 - 7.3 Symmetry
 - 7.4 Passive Components
 - 7.5 Substrate Coupling
REFERENCES

[12] 黃威霖, "適合低電壓應用端的高效率CMOS直流轉直流切換式穩壓器",國立成功大學電機工程學系碩士論文,(民93)。

