Mechanism of Ciprofloxacin- and Imipenem- Resistance in Multidrug-Resistant Acinetobacter baumannii

Chen Li-Yun, Liu Shu-Ying; CHU Chih-Hsun
E-mail: 9417462@mail.dyu.edu.tw

ABSTRACT

The infections caused by multidrug-resistant Acinetobacter baumannii (MDRAB) have been increasing in recent years, ever since MDRAB became major sources for nosocomial infections in many countries. In this study, 35 strains of A. baumannii isolated from Chang-Gung Memorial Hospital (CGMH) were tested. We analyzed the expression of ade in these clinical isolates' efflux pump systems by real-time quantitative PCR, and found that the expression of this drug transporter were most significantly associated with drug-resistance to ciprofloxacin and ampicillin-sulbactam. Among these isolates, ciprofloxacin-resistant AB-1227 constitutively expressed ade in the presence or absence of ciprofloxacin, but the mechanism remained to be elucidated. Furthermore, mutation analyses of GyrA and ParC showed that the change of few residues, together with ciprofloxacin-output by Ade transporter, highly increased the capacity of resistance to ciprofloxacin. In the studies of imipenem-resistance genes, we found blaIMP-1 in 8 of 35 isolates. Besides blaIMP-1, the combination of drug-resistance genes located in the gene cassette including 5''CS-blaIMP-1-aadA4-3''CS, 5''CS-aacA4-aadA1-3''CS, and 5''CS- aacC1- aadA1-3''CS. No blaVIM-1 or blaVIM-2 was found in these resistant isolates. It had been shown that blaIMP-1 can be inserted into the plasmids, so the drug-resistance among pathogens could spread through plasmids transfer. In conclusion, the multidrug-resistance of A. baumannii was not due to drug resistance genes only, but also some other drug-resistance mechanisms (ex. efflux pump). All together, these mechanisms make pathogens more drug-resistant.

Keywords : multidrug-resistant Acinetobacter baumannii (MDRAB), real-time quantitative PCR, efflux pump, drug resistance gene, ciprofloxacin

Table of Contents

Chapter 1: Introduction
1.1 Acinetobacter baumannii Introduction
1.1.1 Characteristics of Acinetobacter baumannii and its clinical manifestations
1.1.2 Antibiotics classification and their action mechanisms
1.1.3 Bacterial resistance mechanisms
1.1.4 Multiple-drug resistance bacterial efflux pumps structure and classification
1.1.5 Research on Acinetobacter baumannii resistance
1.2 Real-time quantitative polymerase chain reaction
1.3 Suppression subtractive hybridization
1.4 Experimental objectives
Chapter 2: Materials and Methods
2.1 Strain source and classification
2.2 Bacterial genomic DNA extraction
2.3 Polymerase chain reaction
2.4 Purification of PCR products
2.5 Gel extraction of PCR products
2.6 Sequencing analysis
2.7 Total RNA extraction
2.8 Reverse transcription (Reverse Transcription)
2.9 Real-time quantitative polymerase chain reaction
2.10 Suppression subtractive hybridization (SSH)
2.10.1 Extraction of bacterial genomic DNA
2.10.2 Restriction enzyme digestion and product recovery
2.10.3 Linking tester DNA and adaptor
2.10.4 First hybridization reaction
2.10.5 Second hybridization reaction
2.10.6 Amplification reaction
2.10.7 PCR cloning
2.11 Extraction of plasmid DNA
2.12 Restriction enzyme digestion
Chapter 3: Results and Discussion
3.1 adeB resistance gene expression and antibiotic relationship
3.2 Antibiotic induction and adeB expression relationship
3.3 Analysis of gyrA and ParC gene mutations and CIP resistance relationship
3.4 Integron I-carrying resistance genes and sequence analysis
3.5 SSH suppression after sequence comparison
Chapter 4: Conclusion

References

2. Lin Jie-Yu. 2004. Taiwan Acinetobacter baumannii clinical isolation strain

Appendix