ABSTRACT

The death rate of breast cancer in Taiwan has obviously risen these years, which becomes a very important issue. Many risk factors such as aberrant DNA methylation of promoter region of tumor suppress gene and growth-related gene have been reported, besides family history of breast cancer, endocrine, and carcinogen. Therefore, this study was focused on the relation between aberrant DNA methylation in gene promoter region and breast cancer tumorigenesis. Tumor and normal tissues obtained from 76 breast cancer patients were used to analyze the methylation status of promoter region and gene expression in both of cell membrane protein gene - P-cadherin (CDH3) and regulatory extracellular matrix glycoprotein gene - heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3OST3B) by methylation specific PCR (MS-PCR) and combined bisulfite restriction analysis (COBRA). Because there was no aberrant methylation observed in CDH3, only 3OST3B was chosen for further analyses including COBRA-sequencing, reverse transcription PCR (RT-PCR), and immunohistochemical stain (IHC). The distribution of methylated CpG site and the expression of mRNA and protein were analyzed. According to the methylation status of 3OST3B in the tumor tissues, we divided the 76 patients into three groups - 27 patients of hypomethylation, 20 patients of intermediate methylation and 29 patients of hypermethylation. In 3OST3B promoter region, there were many CpG dinucleotides found in the binding sites of several transcription factors such as NF-κB, E2F, and n-MYC. The methylation status of CpG dinucleotides might affect the expression of 3OST3B. The results of IHC showed that the expression of 3OST3B in tumor tissues with 3OST3B hypermethylation were lower than in normal tissues. After the treatment of demethylation agent, 5-azadC, in breast cancer cell line MDA-MB-231, the methylation level of 3OST3B decreased and the gene expression was restored. The association of 3OST3B methylation status with clinicopathological features of patients with breast cancer showed that 3OST3B with intermediate-methylation and hypermethylation was significantly correlated with non-metastasis (M0) and high p53 expression. Therefore, 3OST3B could be a valuable candidate gene as a predictor of breast cancer risk assessment.

Keywords : CDH3 ; 3OST3B ; DNA Methylation ; COBRA ; breast cancer
第五章 乳癌細胞株之3OST3B甲基化分析及去甲基化試驗

5.1 前言

5.2 材料與方法

5.2.1 乳癌細胞株之取得與保存

5.2.2 萃取乳癌細胞株DNA

5.2.3 DNA之亞硫酸鈉化學修飾及結合亞硫酸鈉化學修飾與限制酵素分析

5.2.4 萃取乳房腫瘤組織與乳癌細胞株RNA

5.2.5 反轉錄聚合酶連鎖反應

5.2.6 去甲基化藥物處理

5.2.7 北方點墨法

5.2.8 乳癌細胞株3OST3B蛋白表現之分析

5.2.9 SDS-PAGE分析

5.2.10 西方點墨法

5.3 結果與討論

5.3.1 COBRA 分析人類乳癌細胞株、肺癌細胞株及肝癌細胞株之3OST3B甲基化狀態

5.3.2 乳癌細胞株經去甲基化藥劑處理後3OST3B甲基化變異

5.3.3 乳癌細胞株經去甲基化藥劑處理後3OST3B mRNA表現

5.3.4 乳癌細胞株MCF7及MDA-MB-231之3OST3B表現量分析

第六章 乳癌細胞株表現3OST3B及其功能分析

6.1 前言

6.2 材料與方法

6.2.1 3OST3B-pIRES2-dsRed2載體之構築

6.2.2 3OST3B-pIRES2-DsRed2轉染於MDA-MB-231細胞株

6.3 結果與討論

6.3.1 3OST3B構築於pIRES2-DsRed2表現載體之分析

6.3.2 3OST3B-pIRES2-DsRed2轉染於MDA-MB-231細胞株之分析

第七章 結論

 REFERENCES


mesotheliomas and E-cadherin in lung adenocarcinomas in formalin-fixed, paraffin-embedded tissues. Hum. Pathol. 28: 641–645. Han, A. C.,

5-Azadeoxycytidine induced undercondensation in the giant X chromosomes of Microtus agrestis. Chromosoma 98: 93-98. Han, A. C.,


Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression. Oncogene 17: 577–583.

Repasky, E. A., Gabrielson, E., Schutte, M., Baylin, S. B. and Herman, J. G. 2000 Promoter hypermethylation and BRCA1 inactivation in


