The Effect of High Power Electromagnetic Pulse on Telecommunication Network

劉嘉仁、林漢年

E-mail: 9315063@mail.dyu.edu.tw

ABSTRACT

And in the human life of technicalization for the constant progress of the modern scientific and technological civilization, no matter wireless communication or the wired communication already become indispensable in people’s life, because of the importance of the communication too, so communication fight and information war become the asymmetric war that a kind of low cost can cause the high result during modernized war. This text suffers to the high electric magnetic pulse of power to the telecommunication network (Telecommunication Network) mainly (High Power Electromagnetic Pulse; HEMP) back influence produced toward telecommunication equipment, electric magnetic pulse is it strike by lightning produce strike by lightning the electric magnetic pulse to refer to in general (Lightning surge Electromagnetic Pulse; LEMP), or core produce produce nuclear to produce the electric magnetic pulse (Nuclear Electro Magnetic Pulse; NEMP), this thesis focuses on and probes into modernized telecommunication network and structure mainly, and set up the situation that the model of the electric magnetic pulse component and the real equipment of simulation are struck by lightning. The electric magnetic pulse can produce very big reaction electric current (Induced current) and temporary voltage of attitude (Transient Voltage), the electronic equipment damage that makes sensitivly, cause the communication system to paralysed even severed, in the face of this threat, how to strengthen the electric magnetic pulse protective capacities of the communication apparatus, worth further investigating and paying attention to.

Keywords: Telecommunication network; High Power Electromagnetic Pulse; Lightning surge Electromagnetic Pulse; Nuclear Electro Magnetic Pulse

Table of Contents

目錄 封面內頁 簽名頁 授權書.........................iii 中文摘要..............iv 英文摘要........................v 賛謝...................vii 目錄..........................xiii 圖目錄x 表目錄........................xii 第一章 緒論 1.1 研究動機....................1 1.2 電磁脈衝理論說明...........2 1.3 各國電磁脈衝發展現況......6 1.4 研究方法及內容............11 第二章 電磁脈衝的分類,影響與量測 2.1 核爆電磁脈衝與雷擊電磁脈衝特性比較.......14 2.2 電磁脈衝的影響...............18 2.3 電磁脈衝的量測...............22 2.4 電磁脈衝效應...........24 第三章 電信設施實際測量之儀器及模擬分析 3.1 電信相關設施說明...............27 3.1.1 固網設施及架構及說明.............27 3.1.2 海纜設施及架構及說明.............30 3.1.3 國際衛星通信及架構及說明...............38 3.1.4 無線通訊架構及說明...............45 3.2 電磁脈衝模擬...............49 第四章 相關數據模擬與驗證 4.1 系統數據模擬分析...............53 4.2 電信網路實際量測............61 4.3 電磁脈衝之防護...............67 第五章 結論...................73 參考文獻與資料.....................74

REFERENCES

V. K. Garg and J. E. Wilkes, Principles & Applications of GSM, Prentice Hall.

J. R. Wait, “Tutorial note on the general transmission line theory,”

R. Steele, Mobile Radio Communications, Pentech Press.

M. Mouly and M. B. Pautet, The GSM System for Mobile Communications.

Taiwan Astronomy (http://www.tas.idv.tw/)

Solar Wind (Image Source: Ahrens, p. 48, Fig. 2.18)

Ministry of National Defense, Electromagnetic Pulse Bomb, Sharp Technology

Chih-Ping Tsai, P. C. Lin, “Electromagnetic Pulse Protection Specification,” Chung-Shan Institute of Science and Technology, Report No. EMP-HC P001
