Robust Cruise Control and Active Suspension System for the High Speed Train

徐萬權、林志哲

E-mail: 9314963@mail.dyu.edu.tw

ABSTRACT

High speed train is a vehicle system which can be operated at least 200 km/hr. To make sure the safety and comfort at such high speed, the automatic train controller is needed to control and monitor the HST system. In Taiwan, the curved track is unavoidable due to the mountainous topography; thus the stability of the control system is very important. The control system of high speed train can be classified into three systems such as: the motion-planning system, the cruise control system and the active suspension system. In this paper, the cruise control system and active suspension system are studied; finally, the proposed controller is validated in the simulations of the simplified HST model and the whole train model of ADAMS.

Keywords : HST, Cruise Control, Active Suspension System, Sliding control, Automatic train control

Table of Contents

封面內頁 簽名頁 授權書..iii 中文摘要要... v 英文摘要.. vi 諧謝...vii 目錄..viii 圖目錄... x 表目錄..xiii 第一章 緒論.. 1 1.1前言.. 1 1.2文獻回顧.. 3 1.3研究動機與本文架構.. 4 第二章 高速鐵路列車模型建立.. 6 2.1 高速鐵路列車之簡化模型建立.. 6 2.1.1 耦合器之模型... 7 2.1.2 HST之外擾與不確定性... 8 2.1.3 HST之簡化數學模型... 8 2.2高速鐵路列車之全車模型建立...................................... 10 2.2.1單節全車模型外觀建立... 10 2.2.2懸吊系統建立... 11 2.2.3 ADAMS全車模型建立.. 13 第三章 應用順滑模式於巡弋控制系統.. 16 3.1 傳統順滑控制... 16 3.2 可變結構之模態追隨控制.. 19 3.3巡弋控制器模擬(簡化模型) ... 24 3.3.1傳統順滑控制器+傳統切換控制律....................... 27 3.3.2傳統順滑控制器+具有順滑層之切換控制律...... 30 3.3.3可變結構模態追隨控制... 34 3.4巡弋控制器模擬(ADAMS Model)................................. 38 第四章 主動式懸吊系統.. 45 4.1 1/4HST懸吊系統模型.. 45 4.2全域順滑控制器.. 48 4.2.1全域順滑控制器模擬(1/4車mode)....................... 50 4.3高速鐵路列車之全車模擬.. 55 第五章 結論與未來展望.. 64 5.1結論.. 64 5.2未來研究方向.. 65 參考文獻... 66

REFERENCES

[9] 徐正會, 許益誠, "積極滾動控制之車輛半主動式懸吊系統之設 計與分析", 中華名國第二十屆機械工程研討會

