A Study of Go-kart Frame Structure Considering Torsional Stiffness and Collision Strength

游家華、梁卓中
E-mail: 9314783@mail.dyu.edu.tw

ABSTRACT

Go-kart (also called KARTING) has become a recognized and important part of the automobile racing hierarchy. It is one kind of Formula for designing racing car in the world. Designing every single component or system of the frame must have racing functions. The frame of Go-kart influences road dynamic behavior for competition. To satisfy the philosophy of simplicity, competition Go-kart regulations require the absence of suspension systems and differential gear. Thus elastic frame characteristics are highlighted by the absence of suspension elements and the global dynamic behavior is influenced by chassis shape and stiffness and by tires characteristics. Hence frame stiffness must be carefully evaluated in order to compensate the absence of differential gear by producing loads transfer during a turn. The accidental statistics compiled by 10 state regulatory agencies of America that the majority of reported. It could show that the number of accident reports of Go-kart hit stationary object that 24% of all accidents, the number of accident reports of Go-kart ride collided that 64% of all accidents, two rates that 88% of all accidents. Therefore the design of Go-kart frame is very important subject for collision safety. Therefore, this study investigated both handling and collision of Go-kart frame using LS-DYNA3D software. By added pole or change width of the frame to improve handling and collision's safety. And according to Solazzi frame as a referent prototype model. The design and setup of fourteen various Go-kart frame according to ratification by international authority (CIK/FIA). The discussion that the whole torsional stiffness of Go-kart frame, the front, the lift, the right bumper amount of shrinking, the maximum compression of frame during different direction, the maximum energy absorption of each bumper and frame during different direction, etc. These results may provide a useful reference for designing Go-kart frame.

Keywords: Go-kart frame, torsional stiffness, collision strength, LS-DYNA3D

Table of Contents

封面內頁 簽名頁 授權書..iii 中文摘要..v 英文摘要..vii 許謝.. ix 目錄.. xi 圖目錄..xiv 表目錄..xvi 第一章 緒論 1.1 緣起..1 1.2 文獻回顧..2 1.2.1小型賽車Go-kart發展史..3 1.2.2小型賽車國內外相關研究...4 1.3 本文目標..7 第二章 小型賽車車架之基本分析理論 2.1 小型賽車Go-kart設計考量重點及規定....................................13 2.1.1 小型賽車Go-kart設計考量重點..13 2.1.2 小型賽車Go-kart設計規定..16 2.2 小型賽車之整體扭轉勁度...17 2.2.1 小型賽車側傾時四輪垂向力之計算.....................................18 2.2.2 計算小型賽車之整體等效扭轉勁度.....................................21 2.2.3 小型賽車整體扭轉勁度與垂直位移量相互關係.................................22 2.3 小型賽車Go-kart數值分析之理論基礎....................................23 2.3.1 LS-DYNA3D程式之基本理論..24 2.3.1.1統御方程式(Governing Equations)24 2.3.1.2 Lagrangian描述法...25 2.3.1.3 微分方程式...26 2.3.1.4 等向性彈性材料組構關係(constitutive relation)....................26 2.3.2 LS-DYNA3D程式之應用技巧..30 第三章 小型賽車整體扭轉勁度計算之實例驗證與分析 3.1 小型賽車之整體扭轉勁度實例驗證.......................................46 3.1.1 問題描述...46 3.1.2 有限元素模型...47 3.1.3 小型賽車側傾時四輪垂向位移分析.....................................47 3.1.4 小型賽車整體扭轉勁度分析與驗證.....................................48 3.2 不同小型賽車車架構型之扭轉勁度分析...................................49 3.2.1 不同小型賽車車架構型之探討...49 3.2.2 不同小型賽車車架構型之整體扭轉勁度比較.............................51 第四章 小型賽車之抗撞性能分析 4.1 保險桿碰撞規定之驗證...60 4.1.1 問題描述...60 4.1.2 有限元素模型...61 4.1.3 保險桿碰撞規定之驗證分析...62 4.2 小型賽車碰撞分析...65 4.2.1 問題描述...65 4.2.2 有限元素模型...66 4.2.3 前撞性能分析與比較...66 4.2.4 左撞性能分析與比較...67 4.2.5 右撞性能分析與比較...68
Chapter 5: Small Car Frame Design Considerations

5.1 Small Car Design Assessment

5.1.1 Overall Frame Torsional Stiffness Assessment

5.1.2 Small Car Impact Assessment

5.2 Small Car Comprehensive Improvement Design

5.2.1 Problem Description

5.2.2 Finite Element Model

5.2.3 Improved Frame Analysis and Results

Chapter 6: Conclusion and Future Prospects

References

4. Ruxton, "How to Revive the Taiwan Kart Sport".

14. Liang, Deng, You, "Frame Analysis of Single Driver Karting".

