The Differential DNA Methylation in Genomic DNA from Tissues: Approach of Genomic Imprinting Genes Isolation.

李林泉, 李泰林

E-mail: 9314526@mail.dyu.edu.tw

ABSTRACT

DNA methylation is one of the mechanisms of gene regulation and has broadly been found in cell tested, both of the prokaryotes or eukaryotes. This DNA methylation is also the only marker which reflects genomic imprinting, genes expressed from only one allele inherited from parent. These genes express in certain tissues and developmental stages. It was estimated that there are 100 to 200 imprinting genes in whole human genome. However, only around 40 of them have been found. We take the advantages of those characters mentioned before and try to isolate de novo imprinting genes by combination of characters mentioned. Methods include digested genomic DNA from tissues with methylation-sensitive restriction enzyme and the digested DNA subjected to arbitrary primed PCR. Our prelimary data showed that through these methods we could isolate some distinguish bands, termed AP101, AP102, AP103, AP104, AP105, AP201, AP301, AP501 and AP801 from mice cortex. The differential methylation and genes expression will be confirmed by Southern hybridization and RT-PCR.

Keywords: DNA Methylation; Genomic Imprinting; Genomic DNA; Arbitrary Primed PCR

Table of Contents

中文摘要………………………………………………………….. iv
英文摘要………………………………………………………... vi
目錄…………………………………………………………….. viii
圖目錄…………………………………………………… xi
第一章 前言………………………………………………….……. 1
 1.1 基因印痕……………………….………
 1.2 DNA甲基化酵素系統………..…………....…..……. 8
 1.3 DNA甲基化與基因調控……..……….……..……
 1.4 DNA甲基化與癌症關係…….…...……..……..…... 10
 1.4.1 DNA甲基化與基因突變…….….…………..… 14
 1.4.2 DNA甲基化不平衡與癌症之形成…..……….. 16
 1.4.2.1 DNA過度甲基化….………..….……...….. 16
 1.4.2.2 DNA低度甲基化….……
 1.5 DNA甲基化研究方法…..….………………...….… 20
 1.6 研究動機與目的………………….……..…....
 1.6.1 實驗老鼠品系及組織器官之選擇…...…..……. 24
第二章 研究方法…………………………………….……...... 27
 2.1 材料………………………………….…..……...…... 27
 2.2 方法…………………….…….……………….....….. 30
 2.2.1 組織中DNA甲基化差異片段之篩選….…..…. 30
 2.2.1.1 實驗流程……………….………………….. 30
 2.2.1.2 小鼠養殖及犧牲…...…..……...…. 32
 2.2.1.3 組織中基因組DNA萃取及純化………..... 32
 2.2.1.4 甲基化敏感性限制?反應…………...
 2.2.2 DNA甲基化差異片段之選殖………..……….. 34
 2.2.2.1 勝任細胞之製備………………….….....…. 34
 2.2.2.2 DNA片段分離與接合……...…..……...…. 35
 2.2.2.3 轉形作用及質體選殖…..……..……...
 2.2.3 DNA甲基化差異片段之分析….…….……..…
 2.2.3.1 限制?消化反應及瓊脂凝膠電泳…...…… 37
 2.2.3.2 南方點墨雜合反應…………...…………… 38
 2.2.3.2.1 前雜合反應…………….……….…… 39
 2.2.3.2.2 探針製作……………….…………..... 39
 2.2.3.2.3 放射線顯影…………….………….… 40
第三章 結果……………….………..……………….……... 41
 3.1 組織中基因組DNA抽取及限制酵素反應結果.…. 41
 3.2 組織間DNA甲基化差異表現…………………..…. 44
 3.2.1 組織間DNA甲基化差異表現 (AP-1引子 PCR)…………….………
 3.2.2 組織間DNA甲基化差異表現 (AP-2引子 PCR)……………………………………...…… 49
 3.2.3 組織間DNA甲基化差異表現 (AP-3引子 PCR)………………………….……………..… 54
 3.2.4 組織間DNA甲基化差異表現 (AP-5引子 PCR)……………………………….……..…… 59
 3.2.5 組織間DNA甲基化差異表現 (AP-8引子 PCR)………………
 3.2.6 組織間DNA甲基化差異表現………….…...… 67
 3.3 利用甲基化敏感性AP-PCR證明DNA甲基化 之遺傳性………….……….…………………….….. 68
 3.4 組織專一性DNA甲基化表現……...………..…….. 68
第三章 討論……….………………..……………….……... 74
 4.1 差異性甲基化基因………………………….……… 74
 4.2 差異性甲基化之遺傳……….…...…….…….……... 75
 4.3 南方點墨雜合反應……..…….…….………….…... 76
第四章 結論……….………………..……………….……... 77
 參考文獻………………………………………...… 78
 附錄…………………………………………...……………………. 91

REFERENCES

5-Azacytidine induces micronuclei and morphological transformation of Syrian hamster embryo fibroblasts in the absence of unscheduled DNA
5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22:972-976. Singer-Sam, J., Grant, M., LeBon, J.M., Okuyama, K., Chapman, V.,
methylation of the BRCA 1 CpG island promoter is associated with decreased BRCA 1 mRNA in sporadic breast cancer cells. Oncogene
Characterization of MeCP 2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20:5085-5092. Meehan,
administration of 5-azacytidine results in epigenetic changes in differentiating ES cells that mimic the naturally occurring H19 expression pattern.