A Study on the Machinability of A356/SiCp Composites

蔡秉傑、胡瑞峰
E-mail: 9314503@mail.dyu.edu.tw

ABSTRACT

The aims of this study are to investigate the machinability of different A356/SiCp composites by Taguchi method. Through setting different cutting parameters, the relationship between the quality of cutting and the mechanical properties for the composites was investigated. The experiments set the SiCp reinforcement contents are 5wt.%, 10wt.% and 20wt.%. The composites are heat-treated by the T6 precipitation hardening heat treatment or not. And the cutting variabales studied are the tool materials, the cutting speed, the feed rate and the depth of cut. The machinability evaluated are the cutting force, the surface roughness of machined surface and the tool wear amount. Finally, the microstructures of tool worn surface, the machined broken section area of tensile bars and the machined surface of the composites are observed to realize the machinability. The results of research show that the cutting force is increased with increasing the depth of cut, the cutting speed and the feed rate because the opportunity of tool touching against SiCp is increased with increasing SiCp contents. After the composites added above 10wt.% of SiCp, and by heat-treated, the surface smoothness and the machinability of the composites can be improved. The most effective factor for the machinability of A356/SiCp composites are the cutting tool material and the SiCp content. When increasing the hardness of composites, the tool flank wear will be mostly reduced, but will be increased with increasing SiCp content. It was suggested to untilize CBN tool to cut the composites with SiCp over 10wt.% content, the results can show that better surface smoothness and less flank wear were obtained. While for the composites with less than 10wt.%SiCp, the TiC tool was suggested to be used. No matter what kinds of cutting tools, it cannot get better surface smoothness for them to cut the A356 alloy and the A356+5wt.%SiCp composites.

Keywords : Taguchi Method, A356 Aluminum Alloy, A356/SiCp Composite, Machinability, T6 Precipitation Hardening Heat Treatment

Table of Contents

I. 签名頁 授權書 iii
II. 中文摘要 v
III. 英文摘要 vii
IV. 謝謝 ix
V. 目錄 x
VI. 圖目錄 viii
VII. 表目錄 xvii
VIII. 符號說明 xix

第一章 前言 1

第二章 文獻探討 3

第三章 實驗方法及步驟 30

第四章 結果與討論 43

第五章 結論 55

簽名頁 授權書 iii

中文摘要 v

英文摘要 vii

謝謝 ix

目錄 x

圖目錄 viii

表目錄 xvii

符號說明 xix

第一章 前言 1

第二章 文獻探討 3

第三章 實驗方法及步驟 30

第四章 結果與討論 43

第五章 結論 55
系Ⅲ切削參數與表面粗糙度之關係

係Ⅲ切削參數與刀規磨耗之關係

係Ⅲ切削力分析

係Ⅲ表面粗糙度分析

係Ⅲ刀具磨耗分析

係Ⅲ切削表面之車削觀察

第五章 結論

參考文獻

REFERENCES


[25] F. J. Humphreys, 9th Riso Conference, Denmark, p 25

[26] 金重勳, 熱處理, 異文書局, 1986, pp.463-474

[27] 黃振賢, 金屬熱處理, 文京出版社, 1993, pp.544-554


[37] 劉偉均, 切削加工學, 東華書局


[39] Milton C. Shaw, Metal Cutting Principles

[40] 趙崇禮, “超精密加工技術研製”, 軍民通用電子光電關鍵技術發展計劃期末報告, 中正理工學院機械工程學系, 1999

[41] 賴耿陽, 精密加工新技術全集, 超國出版社, 1993


[43] 張煜明, 車削瞬時切削力特性之研究, 碩士學位論文, 國立清華大學動力機械工程研究所, 1997

[44] 蔡居通, 面銑削瞬時切削力係數之研究, 碩士學位論文, 國立 清華大學動力機械工程研究所, 1995
