應用混合式演化演算法於工作匹配與排程問題之求解

錢雅惠、江傳文

應用混合式演化演算法於工作匹配與排程問題之求解

摘 要
異質性叢集運算已被認為是極具發展潛力的方法，其可用以解決需要大量運算的科學問題。吾人可將某一平行程式分解為數個工作，並將這些工作以並行的方式指派給不同的處理單元來執行。一般而言，這些工作可以用工作圖來加以特徵化，並且以一個有向非循環圖來表示。本論文中，我們提出了一個混合式演化演算法，用以將工作圖中的工作分派給異質性叢集運算環境中的處理單元。此一方法係以遺傳演算法的基本架構為基礎。在交配與突變程序中，我們針對問題的特性分別設計出拓樸順序交配（topological order crossover, TOX）與導引式突變（guided mutation, GM）運算子。TOX 運算子經證明可用以產生完全符合問題限制條件的合法染色體。此外，相較於傳統的單一切點順序交配運算子（order crossover, OX），我們也證明了 TOX 運算子具有較高的有效性。我們同時也將 GM 運算子與模擬退火方法優異的區域搜尋能力整合在一起，用以強化突變的效能，避免無效的突變運算。我們還將本文中所提出之方法分別與禁制搜尋法、模擬退火法以及傳統的遺傳演算法進行效能的評估與分析。實驗結果顯示，在工作匹配與排程問題的求解中，我們所提出的演算法確實優於前述三種方法。

關鍵詞：工作匹配與排程、遺傳演算法、模擬退火演算法、禁制搜尋法

目錄

第1章 導論..1
第2章 問題塑模..6
第3章 相關研究...11
3.1 遺傳演算法..11
3.2 模擬退火演算法..17
3.3 禁制搜尋演算法..19
第4章 設計方法...21
4.1 方法綜觀..21
4.2 交配程序設計..24
4.3 突變程序設計..32
第5章 實驗結果...38
5.1 圖形產生器..38
5.2 實驗結果..41
第6章 結論...56
參考文獻..58

參考文獻

[12] M. AI-Mouhamed and A. AI-Mouhamed, “Performance Evaluation of Scheduling Precedence-Constrained Computations on...

