The Analysis of Occupant Injury in Frontal Impact of Traffic Accident

李建昌、鄧作樑
E-mail: 9224278@mail.dyu.edu.tw

ABSTRACT

Traffic accident now is stated as a danger threatening man's safety on live and health as well as causing great losses to mankind. Injury prevention therefore is useful and significant for its relation to the happiness of each individual, family in a safe and sound society. According to the accident statistics, 58.1% of the occupants suffered head injuries. Therefore, analyzing human body's dynamic response and head injury in relation to considerations of men's safety are a relevant task. Generally, there are two methods to investigate the dynamics response and injury analysis on human body under car crash. One is experimental method, and the other is numerical simulation. Among experimental method, it can be divided into real car collision test and sled experiments. Even though the real car collision test can get the results close to the real accident, but it is complicated and expensive to do so. Furthermore, it is not always practical or ethical to use actual occupant to assess the risks. Recently test dummies are used for research and development, it can simulate human response when exposed to a car collision environment. In recent years, the rapid advance of computer technology has enabled to apply mathematicians, engineers and scientists to make significant progress in the solution of previously intractable problems. The numerical simulations of crash provide a valuable tool for automotive engineers. The purpose of this study is to explore frontal collision phenomena by using LS-DYNA finite element code and Hybrid Ⅲ deformable dummy model. The Hybrid Ⅲ finite element model is verified by the FMVSS 208 for occupant safety rule. The injury analysis of human body under crash is discussed. Additionally, the results of Hybrid Ⅲ deformable dummy model are compared with the rigid body model.

Accident reconstruction and investigation remains an essential part in understanding the nature of physical injury as a result of vehicular impact. The injury analysis under car crash in this study provides the necessary materials in completing an accident reconstruction investigation. An understanding of AIS and HIC values is considered essential in determining the cause of a motor vehicle accident.

Keywords: Sled Test, Head Injury Criteria (HIC), Vehicle Impact, Accident Reconstructure

Table of Contents

第一章 前言
1.1 研究動機 ...1
1.2 文獻回顧 ...4
1.2.1 車輛碰撞與人體損傷分析4
1.2.2 傷害指標 ...9
1.3 研究目的 ...12
1.4 論文架構 ...13

第二章 基本理論 ...17
2.1 數值分析軟體17
2.1.1 偏微分程式之空間離散法18
2.1.2 等向性彈性材料組構關係20
2.1.3 運動方程式21
2.1.4 程式之應用26
2.2 損傷分析 ...33
2.2.1 頭部傷害指標34
2.2.2 頸部傷害指標35
2.2.3 胸部傷害指標36
2.2.4 下四肢傷害指標37
2.3 撞擊傷害機轉37
2.3.1 頭部之傷害機轉38
2.3.2 胸部之傷害機轉38
2.3.3 腰部之傷害機轉39
2.4 簡易損傷指標39

第三章 Hybrid Ⅲ實驗人偶以及實車、台車衝擊試驗之簡介
3.1 Hybrid Ⅲ實驗人偶發展51
3.2 Hybrid Ⅲ人偶構造52
3.3 正面衝擊實車碰撞試驗方法55
3.4 台車衝擊試驗57

第四章 有限元素人偶模型之建構
4.1 人偶有限元素模型之建構72
4.2 Hybrid Ⅲ實驗人偶標準試驗規範與驗證78
4.2.1 頭部落下驗證79
4.2.2 頸部擺臂撞擊驗證80
4.2.3 胸部擺錘撞擊驗證80
4.2.4 膝部擺錘撞擊驗證81
4.3 Hybrid Ⅲ有限元素人偶驗證82
4.3.1 頭部落下模擬驗證83
4.3.2 頸部擺臂撞擊模擬驗證84
4.3.3 胸部擺錘撞擊模型驗證87
4.3.4 膝部擺錘撞擊模型驗證88

第五章 正面撞擊人體損傷分析
5.1 正面撞擊人體損傷分析134
5.1.1 台車衝擊試驗實驗環境135
5.1.2 台車衝擊實驗數值模型136
5.1.3 損傷分析結果137
5.1.4 可變形人偶與剛性人偶之比較分析140
5.2 肇事重建模式 ...142
5.2.1 肇事重建之損傷基礎142
5.2.2 人體各部位損傷與簡易損傷程度之關係143
5.2.3 人體損傷程度與AIS損傷等級關係之建構145
5.2.4 撞擊速度與頭部HIC值之對應關係145
5.2.5 肇事重建之流程146
5.2.6 肇事重建實例分析147

第六章 結論與未來展望165

參考文獻 ...168

http://www.medal.org

