Optimal Neural-fuzzy Approach for Current/voltage-controlled Electromagnetic Suspension System

張晏誠、吳幸珍
E-mail: 9223668@mail.dyu.edu.tw

ABSTRACT

In this article, the electromagnetic suspension system is modeled as a neural-based T-S fuzzy system, and then the optimal fuzzy control design scheme is proposed to control the current and voltage-controlled system with minimum current and voltage consumption, respectively. The proposed self-constructing neural fuzzy inference network is a six layer neural network (SONFIN) modified from the well-known SONFIN network, which can construct a linear T-S fuzzy model and affine T-S fuzzy model of the system just by the input and output (I/O) information. Based on the T-S model, we can construct the optimal fuzzy control scheme to efficiently regulate the highly nonlinear, complex and uncertain electromagnetic suspension system to the equilibrium state.

Keywords: SONFIN, electromagnetic suspension system, optimal fuzzy control

Table of Contents

CHAPTER 1 INTRODUCTION1
1.1 Motivation ..1
1.2 Review Literature2
1.3 Survey of Fuzzy Model2
1.4 Survey of Fuzzy Control3
1.5 Brief Sketch of the Contents5

CHAPTER 2 ELECTROMAGNETIC SUSPENSION SYSTEM6
2.1 Construction ..6
2.2 Mathematical Model7

CHAPTER 3 NEURAL NETWORK BASED FUZZY MODELING12
3.1 Takagi and Sugeno's Fuzzy Model12
3.2 Linear T-S Fuzzy Model and Affine T-S Fuzzy Model13
3.3 Structure of SONFIN15
3.4 T-S Fuzzy Modeling of Electromagnetic Suspension System 20

CHAPTER 4 OPTIMAL FUZZY CONTROL DESIGN26
4.1 Local Concept Approach of Linear T-S Fuzzy Model26
4.2 Local Concept Approach of Affine T-S Fuzzy Model30

CHAPTER 5 INTEGRATION OF FUZZY SYSTEM MODELING AND OPTIMAL CONTROLLER DESIGN ..32
5.1 Numeral Simulation33
5.2 Simulated Results of The Robustness43

CHAPTER 6 CONCLUSION51

REFERENCES

