THE APPLICATION OF GENETIC ALGORITHM FOR CELLULAR MANUFACTURING SYSTEMS IN A FUZZY ENVIRONMENT

李師尹、白炳豐

E-mail: 9127157@mail.dyu.edu.tw

ABSTRACT
Due to advantages of simplification of manufacturing process, improvement of product quality, and reduction of set-up time and inventory, the Cellular Manufacturing system (CMS) has been widely investigated. However, CMS have been proven to be a non-polynomial (NP) problem. Thus, in this study a genetic-algorithm (GA) heuristic algorithm is borrowed to deal with the problem. In this research, a multiple-objective cell formation problem is investigated. In the tradition clustering method, it is assumed that one part only belongs to one family. However, this is not always the case. In the real problems, one part can belong to one family with a degree of membership. Therefore, the fuzzy set theory offers a possible solution for this situation. The aim of this research is to design a GA base algorithm to deal with the CMS problem in a fuzzy environment. Finally, the results are compared with existing algorithms.

Keywords : Group Technology ; Cell Formation Problem ; Fuzzy Theory ; Genetic Algorithm

Table of Contents
封面內頁 簽名頁 授權書…………………………………………………………..…….iii 中文摘要………………………………………v 英文摘要……………………………………………………………...vi 贅謝……………………………vii 目錄………………………………………………………………….viii 圖目錄………………xb 表目錄………………………………………………………………...xi 第一章 緒論 1.1研究背景與動機…………………………………………1 1.2 研究目的………………………………………………...2 1.3 研究範圍與假設………………………………………...4 1.4 研究方法與步驟………………………………………...5 第二章 文獻探討 2.1單元製造系統問題相關文獻探討………………………7 2.1.1單元製造系統問題模式…………………………...7 2.1.2 單元製造系統問題相關技術…………………...10 2.2基因演算法……………………………………………..19 第三章 單元製造系統規劃方法 3.1 目標函數……………………………………………….25 3.2基因演算法運算方式…………………………………..26 3.3績效指標………………………………………………..36 第四章 結果分析與討論 4.1模糊基因演算法與其他文獻之比較…………………..37 4.1.1分群結果…………………………………………37 4.1.2.結果分析…………………………………………….39 4.1.3. 例題測試………………………………………..39 4.2. 模糊基因演算法與基因演算法之比較…………41 第五章 結論與未來研究方向 5.1 結論…………………………………………………….43 5.2未來研究方向……………………………..44 參考文獻……………………………………………………………..45 圖目錄 圖 1-1 研究流程圖……………………………..………………….....6 圖 2-1工件與機器之關係矩陣…………………..…………………..8 圖 2-2 區塊對角線矩陣…………………………..………………….9 圖 2-3 存在例外元素及空缺之區塊對角線矩陣..………………….9 圖 2-4 基因演算法流程圖…………………………..………...…....24 圖 3-1 染色體編碼方式………………………………………...26 圖 3-2 機器交配示意圖…………………………………………….29 圖 3-3 工件交配示意圖………………………………………..31 圖 3-4 機器與工件同時交配示意圖……………………………….32 圖 3-5 單元突變示意圖……………………………………….……33 圖 3-6 機器突變示意圖……………………………………….……34 圖 3-7 工作突變示意圖……………………………………….……35 表目錄 表2-1單元製造系統相關文獻與影響因素表………………………11 表4-2初始機器-工件途程矩陣……………………….….…………38 表4-2最佳機器-工件途程矩陣……………………………………..38 表4-3分群結果比較表……………………………………..………..39 表4-4與其他文獻比較表…………………………………..………..40 表4-5模糊基因演算法與基因演算法之比較…………….………...41

REFERENCES

CHESTER, MICHAEL, 1993, “NEURAL NETWORKS-A TUTORIAL”, PRENTICE-HALL INC.

FAUSETT, LAURENE, 1994, "FUNDAMENTALS OF NEURAL NETWORKS," PRENTICE HALL INC.

GULTOM PARAPAT, 1996, "FUZZY SET THEORY APPLIED TO THE DESIGN OF CELL FORMATION IN CELLULAR MANUFACTURING SYSTEMS," PH. D. DISSERTATION, KANSAS STATE UNIVERSITY, USA.

HANSEN, P., 1986, "THE STEEPEST ASCENT MILDEST DECENT HEURISTIC FOR COMBINATORIAL PROGRAMMING," CONF. ON NUMERICAL METHODS IN COMBINATORIAL OPTIMIZATION, CAPRI, ITALY.

HOLLAND, J. H., 1975, "ADAPTATION IN NATURAL AND ARTIFICIAL SYSTEMS," UNIVERSITY OF MICHIGAN PRESS, ANN ARBOR, MI.

LIAO, T.W., 2001, "CLASSIFICATION AND CODING APPROACHES TO PART FAMILY FORMATION UNDER A FUZZY ENVIRONMENT" FUZZY SETS AND SYSTEMS, 122, 425-441.

PHAM, D.T. AND KARABOGA, 2000, "INTELLIGENT OPTIMIZATION TECHNIQUES", SPRINGER-VERLAG INC.

PAI, PING-FENG AND E.S. LEE, 2001, "OPERATIONS RESEARCH IN THE DESIGN OF CELL FORMATI ON IN CELLULAR MANUFACTURING SYSTEMS", GOLDEN JUBILEE VOLUMES, WORLD SCIENTIFIC COMPANY,(TO APPEAR).

WANG, LI-XIN, 1994, "ADAPTIVE FUZZY SYSTEMS AND CONTROL," PRENTICE HALL INC. NEW JERSEY.

