A CLP APPROACH FOR MIXED MODE SHOP SCHEDULING PROBLEM

黃鴻鈞、陳偉星

E-mail: 9126807@mail.dyu.edu.tw

ABSTRACT

In this paper, a constraint-based system, called Oz, was used to solve a mixed-mode shop scheduling problem in which the temporal constraint, capacity constraint, resources utilization constraint are integrated into an open shop problem. The results show that the scheduler in Oz provides the manager a useful tool to obtain solutions of complex problem more efficiently.

Keywords : constraint logic programming ; mixed mode shop scheduling ; Oz

Table of Contents

第一章緒論--P1
1.1 研究動機與背景--P1
1.2 工廠排程問題--P4
1.2.1 零工式生產排程問題--P4
1.2.2 開放式生產排程問題--P5
1.2.3 混合型工廠排程問題--P7
1.3 研究目的--P8
1.4 研究假設--P9
1.5 研究內容與步驟--P9

第二章文獻探討--P12
2.1 混合型排程問題--P12
2.2 限制邏輯規劃--P13
2.3 限制邏輯規劃之應用--P14
2.3.1 國內限制邏輯規劃之應用文獻探討--P14
2.3.2 國外限制邏輯規劃之應用文獻探討--P16

第三章研究方法--P20
3.1 符號定義--P20
3.2 混合型工廠排程問題限制--P21
3.2.1 機器加工限制（負荷限制）--P22
3.2.2 加工步驟限制--P22
3.2.3 加工步驟順序限制--P23
3.2.4 工作間加工順序限制--P23
3.2.5 機器間加工順序限制--P24
3.2.6 加工作業時間限制--P24
3.2.7 工作時間限制--P25
3.2.8 機器使用時間限制--P26
3.2.9 總時程最小化限制--P26

3.3 限制邏輯程式規劃--P27
3.3.1 限制式(CONSTRAINTS)--P28
3.3.1.1 變數限制式--P28
3.3.1.2 區域限制式(LOCAL CONSTRAINTS)--P29
3.3.1.3 全域限制式(GLOBAL CONSTRAINTS)--P30
3.3.2 限制式推論機--P31
3.3.3 限制傳導(CONSTRAINT PROPAGATION)--P31

3.4 應用限制邏輯規劃求解混合型生產排程問題--P33
3.4.1 建立混合型工廠排程問題基本限制式--P34
3.4.2 順序限制式(SERIALIZATION CONSTRAINTS)--P35
3.4.3 時間限制式(TIME CONSTRAINTS)--P37
3.4.4 分枝界限搜尋演算法求解--P38
3.4.4.1 分枝策略--P38
3.4.4.2 界限值--P43
3.4.4.3 搜尋策略--P44
3.4.4.4 搜尋樹--P49
3.4.4.5 最佳分枝界限搜尋求解政策--P50

第四章模式驗證--P52
4.1 求解工廠排程問題--P52
4.2 驗證混合型工廠排程求解系統--P61
4.3 問題範例驗證實驗結果--P68
4.4 最佳分枝界限搜尋求解政策--P69

第五章結論--P72

參考文獻--P74

附錄一OZ-限制排程推論機程式碼--P81
附錄二OPS(JOB:12 * MACHINE:10)問題參數--P81
附錄三LICENSE AGREEMENT FOR OZ 3--P81

REFERENCES

[1] 林達民(1992),建構於限制性邏輯程式設計方法之自動排班模型,台灣大學資訊工程研究所碩士論文。
JORG WURTZ, DFKI GMBH, AND SAARBRUCKEN (1997), CONSTRAINT-BASED SCHEDULING IN OZ., FTP://FTP.PS.UNI-SB.DE/PUB/PAPERS/PROGRAMMINGSYSLAB/CONSTRAINTSCHEDULING97.PS.GZ


ULRICH BIEKER AND PETER MARWEDEL, RETARGETABLE SELF-TEST PROGRAM GENERATION USING CONSTRAINT LOGIC PROGRAMMING., UNIVERSITY OF DORTMUND, DEPARTMENT OF COMPUTER SCIENCE, D-44221 DORTMUND, GERMANY


AGGOUN, A. AND BELDICEANU, N. (1992), EXTENDING CHIP IN ORDER TO SOLVE COMPLEX SCHEDULING AND PLACEMENT PROBLEMS., ACTES DES PREMIERES JOURNEES FRANCOPHONES SUR LA PROGRAMMATI ON EN LOGIQUE, LILLE, FRANCE.


TALLYS H. YUNES, ARNALDO V. MOURA AND CID C. DE SOUZA. (2000), MODELING AND SOLVING A CREW ROSTERING PROBLEM WITH CONSTRAINT LOGIC PROGRAMMING AND INTEGER PROGRAMMING., TECHNICAL REPORT IC 00-04, INSTITUTE OF COMPUTING, UNICAMP


CHRISTOPHE BISIERE., SD-SOLVER: TOWARDS A "MULTIDIRECTIONAL" CLP-BASED SIMULATION TOOL., GREMAQ, UNIVERSITEDE TOULOUSE 1, MANUFACTURE DES TABACS, 21 ALL'EESDE BRIENNE, 31000 TOULOUSE CEDEX, FRANCE.


STEVEN BASHFORD, AND RAINER LEUPERS (1999), CONSTRAINT DRIVEN CODE SELECTION FOR FIXED POINT DSPS, 36TH DESIGN AUTOMATION CONFERENCE, NEW ORLEANS (USA).

ROBERTO BAGNARA (1993), AN APPLICATION OF CONSTRAINT PROPAGATION TO DATA-FLOW ANALYSIS., HTTP://WWW.CS.UNIPR.IT/~BAGNARA/PAPERS/ 


ROMAN BARTAK (2001), MIXING PLANNING AND SCHEDULING TO MODEL COMPLEX ENVIRONMENTS., HTTP://KTI.MFF.CUNI.CZ/~BARTAK

PETER BRUCKER (1999), COMPLEX SCHEDULING PROBLEMS., UNIVERSITAT OSNABRUCK DEPARTMENT OF MATHEMATICS / COMPUTER SCIENCE D-49069 OSNABRUCK, GERMANY.

KYUNG-MI LEE AND TAKESHI YAMAKAWA (1998), A GENETIC ALGORITHM FOR GENERAL MACHINE SCHEDULING PROBLEMS., SCHOOL OF COMPUTER SCIENCE AND SYSTEMS ENGINEERING, KYUSHU INSTITUTE OF TECHNOLOGY IIZUKA, FUKUOKA, 820 JAPAN.
HTTP://WWW.MOZART-OZ.ORG

CHRISTIN SCHULTE AND GERT SMOLKA (2001), FINITE DOMAIN CONSTRAINT PROGRAMMING IN OZ.


J. F. MUTH AND G. L. THOMPSON. (1963) INDUSTRIAL SCHEDULING. PRENTICE HALL, ENGLEWOOD CLIFFS, NJ, USA.


MARTIN HENZ (1998), SCHEDULING A MAJOR COLLEGE BASKETBALL CONFERENCE REVISITED, HTTP://WWW.MOZART-OZ.ORG/PAPERS/ABSTRACTS/ACC98.HTML

P. BAPTISTE, C. LE PAPE, AND W. NUIJTEN. (1995) INCORPORATING EFFICIENT OPERATIONS RESEARCH ALGORITHMS IN CONSTRAINT-BASED SCHEDULING. IN FIRST INTERNATIONAL JOINT WORKSHOP ON ARTIFICIAL INTELLIGENCE AND OPERATIONS RESEARCH.

Y. CASEAU AND F. LABURTHE. (1995) DISJUNCTIVE SCHEDULING WITH TASK INTERVALS. LIENS TECHNICAL REPORT 95-25, LABORATOIRE D'INFORMATIQUE DE L'ECOLE NORMALE SUPERIEURE.