DESIGN OF PID FUZZY CONTROLLER IC USING FPGA

杨溢棋、洪進華
E-mail: 9125280@mail.dyu.edu.tw

ABSTRACT

IN RECENT YEARS, THE PID (DIGITAL PROPORTIONAL INTEGRATION DERIVATIVE) FUZZY CONTROL SYSTEM IMPLEMENTED WITH MICRO-CONTROLLER HAS BEEN WIDELY USED IN MODERN INDUSTRIES. IN ORDER TO ACCELERATE THE PROCESS SPEED OF REAL-TIME MULTI-TASKING, MORE INTRICATE AND HIGH-SPEED SYSTEM ADOPTING DISTRIBUTED OPERATION OF MICRO-CONTROLLER IS REQUIRED. INSTEAD OF SOFTWARE IMPLEMENTATION, IN THIS THESIS, A PID FUZZY CONTROLLER CHIP HAS BEEN DESIGNED. THE DESIGN CAN MEET THE REQUIREMENT OF HIGH-SPEED INFERENCE. MOREOVER, IN A COMPLICATED ENVIRONMENT, IT CAN AVOID MALFUNCTIONS AND ERROR INFERENCES RESULTED FROM EXTERIOR NOISES. THEREFORE, THE RELIABILITY OF THE PID FUZZY CONTROLLER IS GOOD. DURING THE DESIGN PROCEDURE, FIRST, WE USE MATHCAD TO VERIFY THE BEHAVIOR MODEL OF PID FUZZY INFERENCE. THEN, WE USE VERILOG HDL (HARDWARE DESCRIPTION LANGUAGE) AND ALTERA FPGA (FIELD PROGRAMMABLE GATE ARRAY) TO DESIGN AND SIMULATE THE CIRCUIT. FINALLY, WE USE THE PERSONAL COMPUTER AND LOGIC ANALYZER TO TEST OUR DESIGN.

Keywords : PID, FUZZY, FPGA, INTELLIGENT

Table of Contents

第一章緒論--P1
1.1 前言--P01
1.2 研究動機--P02
1.3 研究方法--P03
1.4 論文架構--P04

第二章理論探討--P05
2.1 模糊邏輯理論--P05
2.1.1 模糊集合表示--P06
2.1.2 模糊集合運算--P07
2.1.3 模糊推論探討--P08
2.2 PID 架構分析--P14
2.3 模仿PID 動作的模糊演算流程--P17
2.4 數位算術平均值濾波描述--P22
2.5 數位程式判斷防脈衝濾波描述--P24

第三章電路設計架構--P27
3.1 整體主系統設計架構--P27
3.2“模糊化”子系統--P29
3.3“推論引擎”子系統--P31
3.4“解模糊化”子系統--P34
3.5“可調取樣具數位算術平均值濾波”子系統--P40
3.6“程式判斷防脈衝濾波”子系統--P44

第四章硬體電路實現與測試--P47
4.1 FPGA 簡介--P47
4.2 FPGA 實體測試--P50
4.1.1 硬體測試架構--P50
4.1.2 硬體電路測試結果--P52

第五章結論及未來發展--P57

REFERENCES


