Effects of Variety and Mixing Ratio of Wheat Flours and Starches on Quality of Instant Fried Noodle

張郁斌、張基郁 顏裕鴻
E-mail: 9125256@mail.dyu.edu.tw

Abstract
The instant fried noodles were processed through mixing, rolling, threading and waving, steaming, cutting, seasoning, deep-frying, cooling, and packing. In this study the doughs were prepared by mixing different wheat flours (high gluten-content flour and medium gluten-content flour) with different variety of starches (potato starch and tapioca starch) by various ratios (88:12 and 76:24). The proximate compositions (moisture, crude protein, and ash) of eight different doughs were tested. The physical properties (cooked weight gain, cooked volume gain, tensile strength, and color) and the quality (sensory evaluation scores) of the instant fried noodles also studied to obtain the optimal preparation conditions of instant fried noodles. The results showed that the optimal preparation condition for instant fried noodles was mixing high gluten-content flour with potato starch by the ratio of 76:24. The cooked weight gain of the noodles prepared under this optimal condition was 162%, cooked volume gain 100%, and tensile strength 33.33g/mm². The noodles prepared under this optimal condition also had the highest sensory evaluation score of total acceptance.

The results of the analysis of relationship between the proximate compositions of doughs and the cooking properties (cooked weight gain and cooked volume gain) of instant fried noodles showed that the moisture of dough was significantly and positively correlated with the cooked weight gain, the crude protein content of dough was also significantly and positively correlated with the cooked weight gain. The results of the analysis of relationship between the proximate compositions of doughs and the quality (tensile strength, color, and sensory evaluation scores) showed that the moisture of dough was significantly and positively correlated with the Hunter L value and negatively correlated with the Hunter b value, and the crude protein content of dough was significantly and positively correlated with the Hunter b value.

Keywords:

Table of Contents

目錄 頁次 封面內頁 簽名頁 授權書…………………………………………………………iii 中文摘要………………………………………..iv 英文摘要…………………………………………………………...v 賢謝…………………...vii 目錄………………………………………………………………viii 圖目錄…………………………………………………………….xii 表目錄………………………………………………………………xiii

壹 緒論……………………………………………………………….1 貳 文獻回顧………………………………………………….4 2.1 小麥與麵粉………………………………………………….4 2.1.1 小麥之介紹………………………………………...4 2.1.1.1 小麥之種類……………………………………….4 2.1.1.2 小麥之結構……………………………………….5 2.1.1.3 小麥之製粉……………………………………….7 2.1.1.4 小麥之物理性質……………………………….8 2.1.1.5 小麥澱粉之特性………………………………...10 2.1.2 麵粉之介紹…………………………………………...12 2.1.2.1 麼粉之成分…………………………………...12 2.1.2.2 麼粉之等級……………………………………...12 2.1.2.3 麼粉各成分之功能……………………...15 2.1.2.3.1 蛋白質……………………………………...15 2.1.2.3.2 碳水化合物……………………………...16 2.1.2.3.3 酵素………………………………………...17 2.1.2.3.4 維生素……………………………………...18 2.2 澱粉……………………………………………………19 2.2.1天然澱粉的一般性狀…………………………………19 2.2.2修飾澱粉………………………………………………22 2.2.3馬鈴薯澱粉……………………………………………22 2.2.4樹薯澱粉………………………………………….22 2.2.5甘薯澱粉……………………………………………….22 2.2.6玉米澱粉…………………………………….23 2.3 麼條……………………………………………...23 2.3.1 麼糰之流變性質……………………………………...23 2.3.2 麼糰之形成與結構……………………………...24 2.3.3 麼筋結構形成之假說………………………………...26 2.3.4 麼條製品之分類………………………28 參 材料與方法……………………………………………………...30 3.1速食麵製備流程及所需設備…………………………...30 3.1.1混合…………………………………………………….30 3.1.2複合及壓延………………………………….31 3.1.3切條及成形…………………………………………….33 3.1.4蒸炊…………………………………...33 3.1.5油炸…………………………………………………….34 3.1.6冷卻及包裝…………………………………....35 3.2 方法………………………………………………………...35 3.2.1成分測定……………………………………...
3.2.1.1 水分
3.2.1.2 灰分
3.2.1.3 蛋白質含量
3.2.1.4 麵體泡煮增重率
3.2.1.5 麼體泡煮增容率
3.2.1.6 麼條物性測定
3.2.2 感官品評
3.2.2.1 沖泡方式
4.1 八種不同麴糰基本成份分析
4.2 八種不同麴條泡煮後增重率之分析
4.3 八種不同麴條泡煮後增容率之分析
4.4 八種不同麴條拉力試驗之分析
4.5 八種不同麴條泡煮後感官品評之分析
4.6 八種不同麴体色澤之分析

伍 結論

參 考 文 獻

REFERENCES