DESIGN AND FABRICATION OF THE NEW-TYPE PIEZOELECTRIC ACTUATOR

涂昇利、鄭江河
E-mail: 9018986@mail.dyu.edu.tw

ABSTRACT
Recently, in the piezoelectric ceramic research field has been devoted to the development of piezoelectric actuator devices, which exhibit amplified transverse displacement and enhanced load-bearing capability as compared to bulk ceramics. Its form characteristic is analogy with the rainbow with the dome-shaped contour, such as "RAINBOW" and "THUNDER". Because of this, piezoelectric actuators with dome-shaped structure exhibit higher transverse displacement. For this reason, a new method of producing ultra-high-displacement piezoelectric actuators has been developed, which differs from the fabrication of the "RAINBOW" and "THUNDER" type. The piezoelectric composite material can be electroplated with nickel on the metal substrate by electroforming to make the piezoelectric actuators have the dome-shaped structure and add the loading ability. In the process of electroforming, we choose the "High Chloride Nickel Bath". In measurement, calculate the precise dome height and film thickness by image capture software - "Optimas" to gain the relation of time to dome height and film thickness, then, we can calculate the internal stress of the electroforming bath by the internal stress theory of Stoney. Furthermore, we take three pieces of piezoelectric actuators to electroform with different time to confer the influence of electroforming time to displacement performance and loading ability.

Keywords : piezoelectric ; actuator ; electroforming ; internal stress

Table of Contents
第一章 論文--P1 1.1 壓電材料簡介--P1 1.2 研究背景—各式壓電致動器概論--P4 1.3 研究動機--P9 1.4 本文架構--P10 第二章 研究背景—各式壓電致動器概論--P11 2.1 壓電性質及材料--P11 2.2 壓電理論--P14 第三章 有限元法搭配田口式法求得產生大位移大承載力之最佳設計--P20 3.1 不同種類基材及不同拱起高度對位移量及承載力的關係--P20 3.1.1 分析步驟--P21 3.1.2 材料性質--P21 3.1.3 有限元法搭配田口式法分析--P24 3.2 結果討論--P28 第四章 壓電晶片之製程與壓電致動器模組之製作--P29 4.1 壓電晶片製作程序及量測結果--P30 4.1.1 壓電晶片製作程序--P30 4.1.2 壓電晶片材料特性之量測--P39 4.2 壓電致動器模組之製作--P45 第五章 電鑄成型法--P48 5.1 電鍍液的種類--P48 5.2 電鍍浴的選擇--P51 5.2.1 內應力的種類--P52 5.2.2 內應力的特點--P53 5.2.3 電鑄浴的決定--P56 5.3 電鑄法製作新型弧形壓電致動器--P57 5.3.1 建置電鍍設備--P57 5.3.2 電鍍成型--P58 第六章 結果與討論--P63 6.1 電鑄時間與壓電致動器鎳鍍層厚度及拱起高度之關係--P63 6.1.1 電鑄時間與鎳鍍層厚度之關係--P66 6.1.2 電鍍時間與鎳鍍層厚度之關係--P68 6.1.3 內應力的探討--P70 6.1.4 壓電致動器拱起高度與電鑄時間關係--P72 6.2 靜態位移量及承載力之量測--P74 6.2.1 靜態位移量之量測--P75 6.2.2 有限元模擬壓電致動器之靜態位移量--P77 6.3 動態特性量測--P80 6.4 結果討論--P86 第七章 結論與未來努力方向--P93 7.1 結論--P93 7.2 未來努力方向--P93 參考文獻--P95 附錄A--P100 附錄B--P102

REFERENCES


[32] ANSYS, INC. 1994. "COUPLED FIELD ANALYSIS GUIDE-RELEASE 5.3"