IN THIS PAPER WE PROPOSE AN OBSERVER-BASED CONTROL SYSTEM TOLERATING VARIATIONS OF SENSORS. FOR EXAMPLE, SENSORS THAT DEGRADE CANNOT FUNCTION PROPERLY MAY JEOPARDIZE THE CONTROLLED SYSTEM. A TRADITIONAL OBSERVER, I.E., LUENBERGER OBSERVER, AS USUAL, ESTIMATES THE STATE OF THE SYSTEM IN THE PRESENCE OF SENSOR FAULT. SUCH FAULT CAUSES INCOMPLETE MEASUREMENT THAT IS NEEDED FOR THE FEEDBACK. IT'S SHOWN THAT IF A LINEAR MATRIX INEQUALITY (LMI) IS SATISFIED BY PROPERLY CHOOSING THE CONTROLLER GAIN (K) AND OBSERVER GAIN (L), THEN THE SYSTEM CAN BE STABILIZED. USING MATLAB THE SIMULATION SHOWS THAT THE DEVELOPED OBSERVER-BASED FEEDBACK CONTROLLER IS FEASIBLE TO SYSTEM WITH SENSOR FAULT. CONSISTENCY OF SIMULATION AND EXPERIMENT RESULTS VERIFIES THAT THE DESIGNED FEEDBACK SYSTEM WORKS VERY WELL. THE POTENTIAL APPLICATIONS ARE ARRAYS OF MEMS, TACTILE SENSING OF ROBOT, EXPLORATION IN SPACE, AND BIOTECHNOLOGY.

Keywords: SENSOR, FAULT, OBSERVER, LMI, ESTIMATION

Table of Contents

第一章 緒論--P1 1.1研究動機--P1 1.2文獻回顧--P2 1.3論文綱要--P3
第二章 相關數學概論--P5 2.1倫博格觀測器--P5 2.2非線性系統基礎描述--P6 2.3線性矩陣不等式--P10 2.4向量空間--P13
第三章 理論分析--P15 3.1系統概述--P15 3.2控制器增益、觀測器增益與系統穩定度--P20 3.3MIT法則--P25
第四章 電腦實例模擬--P34 4.1系統概述--P34 4.2系統建模--P36 4.3電腦模擬--P41
第五章 硬體實驗--P52 5.1硬體架構--P52 5.2程式設計--P60 5.3實驗數據--P71
第六章 結論與未來研究方向--P86 6.1結論--P86 6.2未來研究方向--P87

REFERENCES

[13] 馮介川、陳俊達、詹昇龍: "感測器失效時之控制系統設計"第十七屆機械工程研討會,第二冊 中華民國89年

[17] A. NAZLI GUNDES: "STABILIZING CONTROLLER DESIGN FOR LINEAR SYSTEMS WITH SENSOR OR ACTUATOR