STUDIES ON THE PREPARATION OF PORK FLAVORED SHALLOT SEASONING OIL.

程安璟、游銅錫

E-mail: 9015768@mail.dyu.edu.tw

ABSTRACT

FRIED SHALLOT OR FRIED SHALLOT SEASONING OIL IS WIDELY USED IN CHINESE FOODS FOR ITS FLAVORING OR SEASONING PROPERTIES. DURING THE OPEN-TYPE FRYING PROCESS FOR SHALLOT SEASONING OIL PREPARATION SIGNIFICANT AMOUNT OF VOLATILE COMPOUNDS WILL LOSS SINCE THE EVAPORATION. UNBROKEN CELLS OF SHALLOT CONTAIN A SIGNIFICANT AMOUNT OF SULFUR-CONTAINING CYSTEINE DERIVATIVES. THESE SULFUR-CONTAINING CYSTEINE DERIVATIVES ARE CONSIDERED TO BE THE FLAVOR PRECURSORS OF SHALLOT. ON CUTTING OR BREAKING OF THE SHALLOT CLOVES, THESE FLAVOR PRECURSORS WILL BE TRANSFORMED TO VOLATILE SULFUR-CONTAINING COMPOUNDS BY FLAVOR ENZYMES TO CONTRIBUTE THE FLAVOR OF SHALLOT PRODUCTS. ON THERMAL TREATMENTS OF SHALLOT BULBS, THE FLAVOR PRECURSORS IN SHALLOT CELLS WILL ALSO BE TRANSFORMED TO VOLATILE SULFUR-CONTAINING COMPOUNDS BY THERMAL BREAKDOWN OR THERMAL REACTIONS OF THESE PRECURSORS. SIGNIFICANT AMOUNT OF THESE FLAVOR PRECURSORS ARE BOUND BY PECTIC SUBSTANCE EXIST IN SHALLOT. AFTER BREAKING DOWN OF THESE PECTIC SUBSTANCE, THE FLAVOR PRECURSORS IN SHALLOT CAN BE RELEASED TO CONTRIBUTE MORE FLAVOR COMPONENTS TO SHALLOT OR SHALLOT PRODUCTS. IN THIS STUDY A PECTIC ENZYME WAS USED TO HYDROLYZE THE PECTIC SUBSTANCE IN SHALLOT JUICE. THE OPTIMAL OR BEST HYDROLYSIS PARAMETERS WERE FOUND TO BE: HYDROLYSIS TEMPERATURE 55 ℃, HYDROLYSIS PH 6, HYDROLYSIS TIME 20 MIN., ENZYME DOSAGE 1% OF THE USED SHALLOT JUICE. THE HYDROLYZED JUICE OF BLANCHED OR UNBLANCHED SHALLOT WAS THEN MIXED WITH THE SAME AMOUNT OF LARD OR CHINSHAN OIL (A FRACTIONATED LARD OIL WITH LESS SATURATED FAT IN IT) AND THEN HEAT IN A CLOSED REACTION STAINLESS CONTAINER WITH STIRRING. THE BEST REACTION PARAMETERS FOR CHINSAN OIL SYSTEM WERE DETERMINED TO BE: ORIGINAL PH OF THE JUICE 5, REACTION TEMPERATURE 140 ℃, REACTION TIME 70 MIN. THE BEST REACTION PARAMETERS FOR LARD SYSTEM WERE DETERMINED TO BE: ORIGINAL PH OF THE JUICE 5, REACTION TEMPERATURE 140 ℃, REACTION TIME 80 MIN. THE ACCEPTANCE OF THE SHALLOT SEASONING OILS PREPARED BY CLOSE THERMAL REACTION WERE COMPARED WITH THOSE PREPARED BY TRADITIONAL FRYING PROCESS. THE ACCEPTANCE OF SHALLOT SEASONING OIL PREPARED BY HEATING THE SHALLOT JUICE HYDROLYSATE IN CHINSAHN OIL AT 140 ℃ FOR 70 MIN AT A ORIGINAL PH OF 5 WAS FOUND TO BE THE SAME WITH THE SHALLOT SEASONING OIL PREPARED BY FRYING THE BLANCHED SHALLOT SLICES IN CHINSAN OIL WHICH WAS THE MOST ACCEPTED ONE AMONG THE SHALLOT SEASONING SHALLOT PREPARED BY FRYING METHODS. VOLATILE COMPOUNDS IN SHALLOT SEASONING OIL ETHER PREPARED BY FRYING OR THERMAL REACTION METHODS, ETHER HEATED IN LARD OR IN CHINSAN OIL WERE COMPARED IN THIS STUDY. GLUCOSE AND THIAMINE.HCL WERE ADDED TO THE REACTION SYSTEM OF BLANCHED SHALLOT JUICE AND CHINOIL AND THEN HEATED 140 ℃ FOR 70 MIN AT A ORIGINAL PH OF 5 TO REALIZE IF THESE REACTANTS CAN ENHANCE THE MEATY NOTE OF THE SHALLOT SEASONING OIL. A RESPONSE SURFACE METHODOLOGY METHOD BASED ON THE SENSORY ACCEPTANCE SCORE OF THE FLAVOR QUALITY WAS USED TO STUDY THE BEST ADDITION AMOUNT OF GLUCOSE AND THIAMINE.HCL. THE BEST ADDITION AMOUNT WAS FOUND TO BE 0.2 G FOR THIAMINE.HCL, AND 0.45 G FOR GLUCOSE WHEN 200 G OF THE BLANCHED SHALLOT JUICE HYDROLYSATE WAS HEATED IN 200 G CHINSAHN OIL AT 140 ℃ FOR 70 MIN AT A ORIGINAL PH OF 5. THE VOLATILE COMPOUNDS GENERATED IN THE ABOVE SYSTEM WERE ISOLATED BY A STEAM DISTILLATION-SOLVENT EXTRACTION METHOD AND FRACTIONATED BY USING A ACID/BASE FRACTIONATION METHOD AND THEN ANALYZED BY GC AND GC-MS. THE MEATY NOTE COMPOUNDS GENERATED WHEN GLUCOSE AND THIAMINE.HCL WAS ADDED TO THE BLANCHED SHALLOT HYDROLYSATE-CHINSAN OIL REACTION SYSTEM WERE FOUND TO BE 2-METHYL TETRAHYDROFURAN-3-ONE, 2-METHYL-3-FURANTHIOL, 3,4-DIMETHYLTHIAZOLE, 4-METHYLTHIAZOLE, 4,5-DIMETHYL -THIAZOLE, AND METHYL
第一章 緒論

第二章 蔥屬蔬菜之概要及相關研究

第三章 果膠分解酵素作用於紅蔥液之最適條件探討

第四章 紅蔥果膠酵素分解液與肉類香味前驅物質進行模式反應條件探討

第五章 模式反應所製紅蔥油與傳統油炸紅蔥油接受性及香氣成分之比較

第六章 紅蔥水解液與肉類香味前驅物質進行模式反應所產生香氣成分之探討

第七章 總結及未來展望

REFERENCES

1. 仇志強、劉素娥、吳淳美 (1983) 油炸紅蔥香料之製造。食品工業發展研究所研究報告第324號。
2. 仇志強、吳淳美 (1985) 油炸紅蔥香味成份之形成。食品工業發展研究所研究報告第397號。
3. 何其儻 (1991) 食品加工過程所生成的香味,香料資訊3(3):49。
4. 吳良碧、吳淳美 (1982A) 冷凍乾燥紅蔥、烘烤紅蔥與油炸紅蔥之揮發性化合物。食品工業發展研究所研究報告第284號。
5. 林欣榮 (1991) 簡介柑桔屬果汁之褐變。食品工業23(7):10。
6. 吳良碧、吳淳美 (1982B) 紅蔥之香味化學在米飯罐頭之應用。食品工業發展研究所研究報告第244號。
7. 吳淳美 (1997) 飲食、健康及香辛料。香料會訊4:3-27。
8. 吳淳美、吳良碧 (1981) 紅蔥之香味化學及其在食品上之應用(一)。食品工業發展研究所研究報告第179號。
12. 陳秀蓮、馮筱慧、葉錦桐、蘇女淳、程竹青(1993) 中式調理食品用肉類調味料之研究與發展(四) -以梅納反應製造肉類及仿肉類調味料。食品工業發展研究所研究報告920號。
13. 陳燕妮 (1996) 以模式反應探討紅蔥及青蔥中之香味前驅物對熱加工紅蔥及青蔥香氣生成之貢獻。大葉大學食品工程研究所碩士論文。
14. 程竹青 (1987) 肉類香氣。食品香料化學與加工。115-131。
15. 黃涵 (1978) 分蔥。豐年社編輯 莖菜栽培106-110。
16. 黃鵬 (1995) 蔥及分蔥之產業與研究。臺灣蔬菜產業改進研討會專集177-192。
