DETECTION OF RELEASED COMPONENTS FROM HI-PS PACKAGING MATERIAL LOADED WITH IMMERSING SOLUTION BY NIRS

Lai Jen Yen, Yen Yu Hong, Chen Yu Shun
E-mail: 9015656@mail.dyu.edu.tw

ABSTRACT

Compounds, such as residual monomers, solvents and oligomers, from various kinds of plastic materials. They have caused severe security problems of food packaging during storage and heating. The research focuses on the possibility of using NIRS in detecting compounds from food containing plastic vessels during heating and storage. Four different immersing solutions (water, 15% alcohol, 3% acetic acid, corn oil) were packed with high impact polystyrene. These models were heated in different temperature (50℃, 70℃, 90℃) for time (5, 10, 20, 30 minutes) followed by stored for one to six months and were analyzed by the Headspace Gas Chromatography (HS-GC) detection and NIRS scan analysis. The data were then processed with NIRS statistical software analyses to establish the calibration curves and their prediction abilities were examined. The results showed the calibration of wavelengths that used in the calculation with every 6 nm, second derivative treatment and stepwise by NIR for high impact polystyrene (HIPS) load with water from different heating treatment and storage time. It could get less standard error of calibration (SEC), SEC was 0.1221, correlation value (R²) was 0.9174 and correlation coefficient (R) of calibration was 0.961. The RPD (RATIO OF THE S.D OF THE ORIGINAL DATA TO THE SEP (STANDARD ERROR OF PERFORMANCE)) was 4.38. It had good represent. The calibration of wavelengths that used in the calculation with every 8 nm, second derivative treatment and stepwise by NIR for high impact polystyrene loaded with 15% alcohol from different heat treatment and storage time. It could get SEC was 0.6439 and R² value was 0.9096 and R of calibration was 0.983 and RPD was 3.47. The calibration of wavelengths that used in the calculation with every 8 nm, second derivative treatment and stepwise by NIR for high impact polystyrene load with 3% acetic acid from different heat treatment and storage time. It could get SEC was 0.1121 and R² value was 0.9453 and R of calibration was 0.928 and RPD was 3.61. The calibration of wavelengths that used in the calculation with every 6 nm, second derivative treatment and stepwise by NIR for high impact polystyrene load with corn oil from different heating treatment and storage time, it could get SEC was 0.7840 and R² value was 0.599 and R of calibration was 0.906 and RPD was 3.

Keywords: HIGH IMPACT POLYSTYRENE, IMMERSING SOLUTION, NIRS

Table of Contents

壹、前言--P1 貳、文獻回顧--P3 一、聚苯乙烯（POLYSTYRENE, PS）的簡介--P3 二、塑膠包裝材質對食品的影響--P5 三、食品包裝材質的遷移作用（MIGRATION）--P8 四、食品包裝材質的吸附作用（ADSORPTION）--P18 五、食品包裝材質的穿透作用（PERMEATION）--P20 六、近紅外線光譜儀之簡介及應用--P23 (一) 分析原理--P23 (二) 近紅外線光譜技術（NIRS）在包裝上之應用--P28 (三) 應用軟體--P29 參、材料與方法--P31 一、實驗材料--P31 二、實驗藥品--P31 三、實驗方法--P31 (一) 進行流程--P31 (二) 分析方法--P32 肆、結果與討論--P36 一、以傳統分析方法分析耐衝擊性聚苯乙烯在不同浸出溶液中之釋出具含量--P36 (一) 浸出溶液-水--P36 (二) 浸出溶液-15%酒精--P38 (三) 浸出溶液-3%醋酸--P40 (四) 浸出溶液-玉米油--P42 二、近紅外線光譜技術分析條件之探討--P47 (一) 檢測器及光徑（PATH LENGTH）之探討--P47 (二) SAMPLE數對其預測能力之影響--P48 三、以近紅外線光譜技術在耐衝擊性聚苯乙烯成分含量上偵測之應用--P50 (一) 浸出溶液-水--P51 (二) 浸出溶液-15%酒精--P63 (三) 浸出溶液-3%醋酸--P74 (四) 浸出溶液-玉米油--P80 伍、結論--P90 陸、參考文獻--P92

REFERENCES
1. 三浦剛 (1988) 近红外线分析仪在加工食品制造管理上之应用。食品资讯, 48:17。
2. 行政院卫生署食字第8246254号 (1993) 食品器具, 容器, 包装卫生标准。
3. 何维彰 (1998) 近红外线光谱技术在酱油主要成分分析之应用。国立中兴大学食品科学研究所硕士论文。
4. 余宗浩 (1998) 软性塑胶包装材质使用期间挥发性成分释出之探讨。私立大叶大学食品工程所硕士论文。
5. 林天贵 (1989) 塑胶包装对食品风味的吸附。食品工业, 21:16-23。
6. 林天贵、冯临惠、林永泰、蔡维钟 (1998) 塑胶包装材料适用性研究 (1) 形成异味因子之探讨。食品工业发展研究所研究报告585号。
7. 林天贵、冯临惠、林永泰、蔡维钟 (1989) 塑胶包装材料对挥发物透过率测定方法之建立。食品工业发展研究所研究报告474号。
8. 林建森 (1999) 台湾茶类滋味品质特性快速分析之研究。国立中兴大学食品科学系硕士论文。
10. 洪端良 (1994) 豆腐用大豆原料大豆品质之研究及其检定。国立中兴大学食品科学系博士论文。
11. 区少梅、林圣敦、林添立、吴松杰、田美纯 (1997) 以近红外线光谱技术分析椪柑品质相关成分之研究。中国农业化学会志, 35(4):462-474。
13. 区少梅、陈阳寿、陈玉舜、谢能 (1994) 以近红外线光谱仪分析牛乳一般成分及计价上之评估。中国农业化学会志, 32(4):384-389。
14. 陈玉舜 (1993) 包种茶官能品质分析及包装改进建议之研究。国立中兴大学食品科学研究所博士论文。
15. 陈俊瞱、陈玉舜、蔡顺仁、纪国库 (1997) 粒度大小对近红外线光谱仪测定面粉品质之影响。弘光学报, 30:29-38。
16. 陈阳寿 (1994) 近红外线光谱技术在牛奶品质分析、掺入检出及乳价评估上之应用。国立中兴大学食品科学研究所硕士论文。
17. 陈昭雄 (1992) 聚苯乙烯所製免洗餐具热安定性之探讨。中华民国营养会誌, 17:81-89。
19. 邹箎生、洪端良 (1990) 如何製备近红外线分析仪之检量线。近红外线分光仪在各种农产品品质管制上之应用研究研討会。台南, 台湾。
21. 郑静桂、许仁平、陈竹青 (1992) 微波加热处理食品与包装材料交互反应之研究 (二)。食品工业发展研究所研究报告980号。
23. ABRANTES, S. (1993) GC-MS IDENTIFICATION OF STYRENE AND OLIGOMER IN POLYSTYRENE PLASTIC FOR MILK PACKAGING-HEADSPACE AND SOLUTION INJECTION TECHNIQUE. J. HIGH RESOLUTION CHROMATOGRAPHY, 16(2):113-116。
28. BURNS, D. A. AND CIURCZAK, E.W. (1792) APPLICATION OF NIR SPECTROSCOPY TO AGRICULTURAL PRODUCTS. HANDBOOK OF NEAR-INFRARED ANALYSIS MARCEL DEKKER, INC. NEW YORK。
30. CHEN, J. S. (1996) STUDY ON THE ANALYSIS OF VOLATILE MONOMERS OF FOOD VESSELS DISPOSABLE WITH HEADSPACE GAS CHROMATOGRAPHY. J. OF FOOD SCIENCE。
WITH NEAR INFRARED SPECTROSCOPY. PP307-311. BATTEN, G.D., FLINN, P. C., WELSH, L. A. AND BLAKENEY A.B.

NIR SPECTROSCOPY GROUP, VICTORIA, AUSTRALIA. 72.


