ABSTRACT

The feed drive system of a machine tool includes the feed mechanism and a NC controller. The feed drive system has large effect on the performance of high speed machine tools. In order to get the enough accuracy of a high speed feed drive system, we must increase the system response and the motion accuracy. To fulfill these requirements, the control system should be reasonably designed. The driving elements and the operating parameters should also be properly determined. In this study, we proposed a measurement technology by using model testing and IBN-TOOLS signal measurement software which is designed by SIEMENS.

First of all, we tried to get the equation of motion for feed drive system from Newton’s low. In order to get the correct transfer function of the system, we also use system identification to analyze the table dynamic response which is caused by the movement of a machine tool. We also proved it by the measurement value. Firstly, we find that the system inertia must correspond to the motor inertia, and the system dynamic properties will be better if both of them are in good operating condition. Secondly, we used the properties of frequency response corresponding to system identification. Then we found the main element which influences the system dynamic properties by adjusting the parameters. Finally we can improve the model by comparing the mathematic model with experimental values.

Keywords : machine tools ; feed drive ; model testing ; system identification


蔡德輝,"CNC工具機動態輪廓精度的檢測與改善" 碩士論文 國立中正大學機械工程研究所 1993。

賴永祥,"工具機高速進給系統之循跡精度分析" 碩士論文 國立中正大學機械工程研究所 1999。

陳政雄,"CNC工具機高速高精度進給技術" 機械月刊 25, No.1,1999。

段玉強,"滾珠螺桿預壓控制與摩擦力補償" 碩士論文 國立中正大學機械工程研究所 1997。

陳政傳,"滾珠螺桿振動及機械效率之理論及實驗分析" 碩士論文 國立成功大學機械工程研究所 1998。