Tolerance stack analysis has become a very important phase during the design stages of a product as it helps designers to keep manufacturing cost down by not having to tighten design and manufacturing tolerance limits unnecessarily, while at the same time achieving the aim of ensuring assemblies and sub-assemblies remains interchangeable, with no rework or deviations of any form arising. Based on the tolerance design database, the system developed by this thesis contains five main modules and several subsidiary programs. These modules are (1) feature extraction module, (2) tolerance specification extraction module, (3) fitting assignment module, (4) Tolerance Network construction module, and (5) tolerance analysis interface.

Keywords: tolerance; Tolerance Network; feature; assembly

Table of Contents

1. Introduction
 1.1 Research Motivation
 1.2 Research Objectives and Scope
 1.3 Research Background
 1.3.1 Dimension Chain
 1.3.2 Spatial Dimensions and Variational Geometric Model
 1.4 System Environment Requirement
 1.5 Thesis Outline

2. Tolerance Analysis Theory
 2.1 Tolerance Mathematical Model
 2.1.1 Tolerance Types
 2.1.2 Deviation Transformation Matrix Theory and Expression
 2.1.3 Dimension and Geometric Tolerance Mathematical Model Establishment
 2.1.4 Interval Data Arithmetic Operations
 2.2 Tolerance Network Expressions

3. System Design and Construction
 3.1 System Architecture
 3.1.1 System Planning
 3.1.2 System Development Tools
 3.2 Solidworks Environment and Application Program Interface Introduction
 3.3 Feature Judgment and Information Extraction Module
 3.3.1 Feature Coordinate Judgement
 3.3.2 Feature Convex Concave Judgment
 3.4 Tolerance Annotation and Information Extraction Module
 3.4.1 Dimensions Tolerance Information Extraction
 3.4.2 Geometric Tolerance and Reference Feature Symbol Information Extraction
 3.5 Tolerance Analysis Calculation Module

4. Case Study
 4.1 Machine Arm Tolerance Analysis
 4.1.1 Document Generation and Tolerance Annotation
 4.1.2 Part Tolerance Analysis Information Extraction
 4.2 Mold Tolerance Analysis

5. Conclusion and Future Prospects
 5.1 Conclusion
 5.2 System Completeness Investigation and Future Prospects

References