Development of papaya milk powder and flavor additives by different drying methods

周弘斌、陈鸿章、王维麒
E-mail: 8901897@mail.dyu.edu.tw

ABSTRACT

The objects of this study were to use different methods, including hot air, spray and vacuum drying, to prepare powders of papaya milk powder. The effect of different processing conditions on the properties of the papaya milk powder was investigated in the study as well. Before drying processes, papaya juice was blanched by microwave mechanism for six minutes. Then pectinase was added into the treated papaya juice which has been incubated at 50 ℃ for 120 minutes. Finally, milk powder and adjunct were added into papaya juice before drying process. The temperature used for hot-air and vacuum drying were 50, 60 and 70 ℃. The solid contents were controlled on 30%. Monolayer moisture contents of dehydrated products after vacuum drying and hot air drying were obtained by using the regression of BET model. The results showed that when papaya milk were treated at 60 ℃, the powder was whiter, the main range was between 0.125 and 0.25 mm, solubility was higher, flowability and bulk density were 1.51 g/sec and 0.46 g/ml, but both flowability and bulk density were lower compared with other samples. However, the sensory evaluation showed that no significant difference was found among the samples treated with various conditions. The optimum drying adjunct was maltodextrin, and the combination of 20% papaya juice, 10% milk powder, and 10% maltodextrin was best formula for sensory evaluation. Before the solid contents were controlled on 30% to receive the best outlet temperature, feeding rate, drying adjunct and adjuncts. As spray drying temperature increased, bulk density, rehydration speed, moisture content and water activity were found slightly decreased, but flowability and particle diameter slightly increased. As the feeding speed increased, moisture content, water activity and particle diameter increased but no significant difference was found in other properties. As the amount of drying adjunct increased, bulk density, flowability, moisture content, water activity and particle diameter decreased, but viscosity increased. The benefit effect of color and flowability of papaya milk powder prepared with addition of sodium bisulfite and tricalcium phosphate. The bulk density, flowability and particle diameter of 20% papaya juice, 20% milk powder were decreased than 20% papaya juice, 10% milk powder, and 10% maltodextrin. The sensory evaluation showed that the combination of 20% papaya juice, 10% milk powder, and 10% maltodextrin was the best formula. The optimum conditions for the spray drying were as follows: the spray drying temperature of papaya milk was 100±4 ℃, feeding rate was 2.5 ml/min, and maltodextrin, sodium bisulfite and tricalcium phosphate additives were 10%, 0.05% and 0.2%, respectively. The combination of 20% papaya juice, 10% milk powder, and 10% maltodextrin was found, the best formula for properties and sensory evaluation of papaya milk powder.

Keywords: papaya milk

Table of Contents

博碩士論文電子檔案上網授權書 iii 授權書 iv 中文摘要 v 英文摘要 vii 許謝 ix 目錄 x 圖目錄 xii 表目錄 xiv 壹、前言 1 貳、文獻整理 2 2.1 蔬果之保存與利用 2 2.2 木瓜的營養及加工利用 3 2.3 果膠質與果膠分解酵素在果汁加工上之應用 7 2.4 蔬果汁的乾燥 10 2.5 乾燥終點的選擇 25 參、材料與方法 30 3.1 實驗材料 30 3.2 實驗設備 30 3.3 試驗設計及流程 32 3.4 乾燥產品的分析項目 37 3.5 流質產品之調製及官能品評 42 肆、結果與討論 46 4.1 木瓜牛奶乾燥前處理之探討 46 4.2 乾燥前各種原料性狀之探討 51 4.3 以熱風乾燥及真空乾燥處理後木瓜牛奶粉之探討 51 4.4 以噴霧乾燥製備木瓜牛奶粉之探討 79 伍、結論 110 陸、參考文獻 112

REFERENCES

7. 林金蓉 (1994) 控低溫真空乾燥與冷凍乾燥產品氧化作用的探討。國立中興大學食品科學研究所碩士論文。
9. 吳瑞碧、陳德昇 (1986) 蕃茄汁酵素性黏度下降的可能機制。中國農業化學會誌, 24 (3):280-287。
10. 侯宗榮、張永欣、林森、蕭穎深 (1977) 由不同品種及成熟果實製成之果汁中不揮發性有機酸組成之研究 II. 杨桃汁、木瓜汁和百香果汁。食品科學, 4 (2):11-24。
63.structure of plant cell walls. A model of the walls of suspension cultured macromolecular sycamore cells based on the interconnections of the
Lebensmittel-Wissenschaft-and-Technologie. 23 (4): 354-357.
34. Bao, B. and Chang, K. C. (1994) Carrot juice color, carotenoids, and