ABSTRACT
Allium vegetables, including garlic, onion and shallot, contain nonvolatile flavor precursors, i.e. S-alk(en)yl-L-cysteiene sulfoxides in the intact cells. After the cellls are physically break down, these precursors can be transformed into alk(en)yl thiosulfinates, the primary flavor compounds of allium vegetables, and contributing the fresh flavor of allium vegetables. On heating of garlic slice or homogenate, the primary flavor compounds can further transformed into sulfides, disulfides, polysulfides, or thiophenes, the second flavor compounds. When the garlic cloves were blanched to deactivate flavor enzymes, the alk(en)yl sulfoxides can be retained in the cells. These sulfoxides can further be transformed into the above sulfur-containing volatile compounds or conducting Maillard reactions with sugars during high temperature thermal processing of garlic cloves. In this thesis, garlic homogenate, blanched garlic homogenate, synthesized alliin (the major sulfoxide of garlic) and deoxyallin (the precurosor of synthesized alliin) were thermally reacted with xylose plus thiamine·HCl and/or cysteine·HCl in a close reactor at 130 C for three hours to study the possibility of using garlic or its flavor precursors to prepare meat flavors. This thesis includes four major parts. In the first part of this thesis garlic homogenate, blanched garlic homogenate were reacted with xylose in the presence of thiamine·HCl and/or cysteine·HCl. The volatile compounds in each reaction solution were compared and the flavor of each reaction mixture was evaluated. The reaction system of blanched garlic homogenate + xylose + thiamine·HCl carrying more preferred meaty flavor than other reaction solutions. Volatile compounds generated in the reaction solutions in the first part were further separated using an acid/base fractionation method in the second part. it was found that most volatile compounds existed in the neutral or slightly acidic fraction. Pyridiens, pyrazines, thiazoles, and oxazoles were mainly existed in basic fraction. Acids and phenols were mainly existed in acidic fraction. Acid/base fractionation method is then proved to be a good method in the separation of the volatile compounds in the reaction solutions prepared in the first part. In the third part, alliin and deoxyalliin were synthesized and then reacted with xylose in the presence of thiamine·HCl and/or cysteine·HCl. The major volatile compounds found in alliin reaction system were mainly thiols, sulfides, and cyclic sulfur-containing compounds. The major volatile compounds found in deoxyalliin reaction system were mainly sulfides. The volatile compounds in each reaction solution were compared and the flavor of each reaction mixture was evaluated. The reaction system of alliin + xylose + thiamine·HCl carrying more preferred meaty flavor than other reaction solutions. Volatile compounds generated in the reaction solutions in the third part were further separated using an acid/base fractionation method in the fourth part. it was found that most volatile compounds existed in the neutral or slightly acidic fraction. Pyridiens, pyrazines, thiazoles, and oxazoles were mainly existed in basic fraction. Acids and phenols were mainly existed in acidic fraction. Acid/base fractionation method is then proved to be a good method in the separation of the volatile compounds in the reaction solutions prepared in the third part.
1. 李秀, 賴滋漢(1976) 食品分析與檢驗。p.90、97。
2. 何其?(1991) 食品加工過程所生成的香味,香料資訊 3(3):49。
3. 林欣榮(1991) 簡介柑橘屬果汁之褐變。食品工業月刊 23(7):10。
5. 陳秀蓮、馮筱慧、葉錦桐、蘇女淳、程竹青(1993) 中式調理食品用肉類調味料之研究與發展 四-以梅納反應製造肉類及仿肉類調味料。食品工業發展研究所研究報告 920號。
6. 程竹青(1987) 肉類香氣。食品香料化學與加工。115-131。
7. 程竹青、鄭靜桂(1988a) 以化學合成法及香料合成法製造中式食品香料(一)。食品工業發展研究所研究報告505號。
8. 程竹青、鄭靜桂(1988b) 以化學合成法及香料合成法製造中式食品香料(二)。食品工業發展研究所研究報告505號。