A Tabu Search Algorithm for the Vehicle Routing Problem

陳勝男、林燦煌
E-mail: 8515667@mail.dyu.edu.tw

ABSTRACT
The purpose of this thesis is to develop a tabu search algorithm (CTS) for a special vehicle routing problem. The problem is based on the Classical Vehicle Routing Problem with a special constraint considering the truck size limit for each demand point which reflects the narrow-street phenomena in Taiwan. The algorithm uses a two-phase approach. In the first stage, an initial solution is generated by a spacefilling curve heuristic. In the second stage, a tabu search method is used as the framework. Within the framework, the combination of insertion and 1-vertex interchange methods between routes was used as move method to improve the solution. Ten test problems from literature are adopted to evaluate the performance of the algorithm for the vehicle routing problem considering single truck type. With four of ten problems, the solutions generated by CTS are the same as the best published ones. When problem size increases, the effectiveness of CTS decreases. Sensitivity analysis is performed to investigate the relationship between number of trucks for each type and the total travel distance. The result shows that more utilization of smaller trucks and less utilization of bigger trucks will cause longer total travel distance.

Keywords: Vehicle Routing Problem; Tabu Search; Spacefilling Curve

Table of Contents

目錄

中文摘要..iii
英文摘要...iv
誌謝..v
目錄...vi
圖目錄...ix
表目錄..x
第一章 緒論...1
 1.1 研究背景與機.........................1
 1.2 研究目的...3
 1.3 研究範圍與問題定義.................................4
 1.3.1 研究範圍..4
 1.3.2 問題定義與描述..................................4
 1.3.3 數學模式..5
 1.4 研究架構...8
第二章 文獻探討..10
 2.1 典型車輛路線問題..................................10
 2.1.1 典型車輛路線問題數學模式.......................11
 2.1.2 車輛路線問題之求解方法.........................12
 2.1.2.1 掃描法(Sweep Procedure).....................15
 2.1.2.2 節省法......................................16
 2.1.2.3 交換法(2-opt/3-opt & k-opt).................18
 2.1.2.4 一般化指派問題啟發式解法....................20
 2.2 空間填滿曲線......................................23
 2.3 禁忌搜尋法(Tabu Search)............................27
 2.3.1 禁忌搜尋法之基本模組...........................27
 2.3.2 禁忌搜尋法之運作流程...........................28
第三章 車輛路線問題之禁忌搜尋法........................31
 3.1 路線建構階段......................................32
 3.2 路線改善階段......................................34
 3.2.1 移步之決定.....................................34
 3.2.2 移步值之評估...................................36
 3.2.3 禁忌名單之設計.................................38
 3.2.4 免禁準則(Aspiration Level).....................40
 3.2.5 候選名單之設計.................................40
 3.2.6 搜尋停止準則...................................42
 3.2.7 禁忌搜尋法之作業流程...........................42
第四章 結果分析..45
 4.1 參數分析與設定....................................48
 4.1.1 參數分析.......................................48
 4.1.2 關於參數設定...................................54
 4.2 結果分析與比較....................................54
 4.2.1 單一車種的結果.................................54
 4.2.1.1 各種車輛路線問題之禁忌搜尋法之比較..........55
 4.2.2 禁忌搜尋法vs 模擬退火法........................57
第四章 需求點有車種大小限制之車輛路線問題................59
 4.3.1 雙車種之例題...................................59
 4.3.2 車隊大小對距離之影響...........................59
第五章 結論與建議......................................64
 5.1 結論..64
 5.2 建議..66
参考文獻...69
附錄一 GSFH演算法......................................75
附錄二 多車種測試例題..................................76
附錄三 各例題參數分析之ANOVA表.........................80
附錄四 各例題之最佳結果................................83

REFERENCES
1. 邱佩諄, “快地運務元動態調派之模擬分析” 国立交通大學,土研所運工管組碩士論文, 民國八十一年六月
2. 陳正元, “節省法與路線交換改善法在車輛路線問題之應用” 国立交通大學, 交通運輸研究所碩士論文, 民國八十年六月
3. 張祖明, “多車種車輛路線問題啟發式解法之研究”, 国立交通大學, 土研所運工管組碩士論文, 民國八十三年六月
8. Clarke, G. and J. Wright "Scheduling of vehicles from a central depot to a number of delivery points", Operations Research, 12, 568-581, 1964