The Effects of Chemical Solution Post-Treatment on the Properties of Thermal Chemical Vapor Deposited Carbon Nanotubes

Ssu Yung Tsen, Li Shih Hsun
E-mail: 387152@mail.dyu.edu.tw

ABSTRACT

In this work, thermal chemical vapor deposition was utilized to grow carbon nanotubes (CNTs) on Si type, catalyst metal is Ni, methane (CH4) was the main source for carbon, and argon was used as the carrier gas. CNTs were synthesized from carbon atoms obtained from catalytic thermal decomposition of methane. A simple acid treatment method was applied to functionalize the surface and to modify the structures of multi-walled carbon nanotubes (CNTs) grown on silicon substrates by thermal chemical vapor deposition (thermal CVD) using sulfuric acid (H2SO4). Scanning electron microscopy (SEM), Raman spectroscopy, and energy dispersive spectrometer (EDS) were employed to investigate the mechanism causing the modified field emission (FE) properties of the CNT film. From our experimental data, it is found that after 20 min of H2SO4 treatment the emitted currents were enhanced by more than one order of magnitude compared with those of the untreated CNTs. We can see that after using H2SO4 of 20 min, the emission current density of CNTs reached 9.44 mA/cm². The method provides a simple, economical, and effective way to enhance the CNT field emission properties.

Keywords: carbon nanotubes (CNTs), emitted currents, thermal chemical vapor deposition (thermal CVD)
REFERENCES


周貝倫著，「純化程序對奈米碳管表面特性影響之研究」，國立中央大學碩士論文，2006年。


[83] 詹博舜,「鉻酸與硝酸後處理對熱化學氣相沉積奈米碳管薄膜表面型態與場發射特性之影響」。大葉大學電機工程系碩士論文，2008年。

[84] 李世凱,「使用熱化學氣相沉積在矽奈米絲上合成奈米碳管」。大葉大學電機工程系碩士論文，2009年。