Growth Characteristics of ZnS Buffer Layers by Chemical Bath Deposition

Lin Wei-en, Yao Pin-quan

E-mail: 387150@mail.dyu.edu.tw

ABSTRACT

In this study, chemical bath deposition (CBD) is employed to growth ZnS buffer layers. Traditional CBD process, as a single-stage process operated under thermodynamic equilibrium, the whole process is time consuming. Furthermore, there is inevitably some ZnS particles resided on the substrate owing to the homogeneous nucleation took place in the solution which will deteriorate the quality of the as-deposited ZnS then film. To alleviate this disadvantage, we apply a novel two-stage CBD process which divide the deposition into two regimes. At the first pot, the glass substrate was dipped in for 1 hour during which the adsorption of complex ions onto the substrate surface took place. After that, the substrate was put in a new bath for the surface reaction of zinc- and sulfur-containing complex ions to proceed. It shows that by applying a two-stage CBD process, a ZnS film with more compact and smooth surface structures could be derived as observed by FE-SEM and AFM. The optical transmittance is declined, as measured by UV-vis spectroscopy, however, the optical band-gap of the as deposited ZnS films were increased from ~ 3.4eV to ~ 3.9eV. XPS analysis confirms that the as-deposited CBD-ZnS films containing minor ZnO phase. The thiourea favors the formation of ZnO phase in this case, as the concentration of thiourea increased, the Zn2p3/2 peak of ZnS (1021.7 eV) blue shifts to 1022.4eV, which is the characteristic Zn2p3/2 peak of ZnO.

Keywords: ZnS, Chemical Bath Deposition (CBD)

Table of Contents

目錄 摘要..i Abstract..ii 誌謝..iii 目錄..iv 圖目錄..vi 表目錄..viii 第一章 緒論..1 1.1 前言..1 1.2 研究目的與動機..3 第二章 基本原理與文獻回顧..4 2.1 太陽電池種類..5 2.1.1 矽晶太陽能電池..5 2.1.2 化合物半導體太陽能電池..6 2.1.3 有機太陽能電池..6 2.2 太陽電池基本原理..7 2.3 銅銦鎵硒太陽能電池..10 2.3.1 銅銦鎵硒太陽電池..12 2.3.2 銅銦鎵硒吸收層..12 2.3.3 緩衝層..12 2.3.4 透明導電層..14 2.4 化學水浴沉積法(CBD)..16 2.4.1 成膜機制..16 2.4.2 以CBD法沉積ZnS薄膜之反應機制..19 第三章 實驗步驟與流程..21 3.1 實驗藥品..21 3.2 製程設備及儀器..23 3.3 實驗流程..24 3.3.1 清洗基板..24 3.3.2 硫化鋅緩衝層製備..25 3.4 材料特性分析..28 3.4.1 冷場發射型掃描式電子顯微鏡(FE-SEM)..29 3.4.2 紫外/可見光光譜分析儀(UV-VIS)..30 3.4.3 X光繞射儀(XRD)..31 3.4.4 原子力顯微鏡(AFM)..32 3.4.5 化學分析電子能譜儀(ESCA)..33 第四章 結果與討論..34 4.1 CdS緩衝層薄膜..34 4.2 ZnS一階段CBD製程..40 4.3 兩階段CBD製程..46 第五章 結論..52 參考文獻..53

Cho HS, Paulsel A, Compositions of aminoacyl-tRNA synthetase and uses thereof, US7846689.

