The Design of Schedulers Based on the Weight of Sub-task Branches in the Grid Environment

鍾崇佑、邱紹豐
E-mail: 387141@mail.dyu.edu.tw

ABSTRACT
Dynamic computing such as Grid computing and Cloud computing is regarded as the major approach to solve large-scale computing problems. It only requires a portal that users can use resource provided by distributed computing. The environment is dynamic in the sense that arrivals of user requests are issued continuously and the number of user requests is unknown in advance. Traditional scheduling algorithms, such as genetic algorithm, tend to generate optimal solutions with high computing costs. They are not suitable for the dynamic environment because of their large scheduling costs and the user requests are unpredictable. The performance of the single scheduler system is degraded as the number of user requests increases. Due to the unpredictability of the user requests, the scheduler may match the requests with sub-optimal processing elements. The situation gets worse as the scheduler becomes the bottleneck because of employing some high cost scheduling algorithms. One of the solutions to cope with this problem is deploy multiple schedulers in the system to distribute the scheduling load. However, this scheme cause the rise of communication cost among schedulers which may not benefitted from the multi-scheduler design. In our research, we proposed a dynamic scheduling technique based on the resource competition strategy. We serialize the user requests according to the interrelationship among the sub-tasks of a request. The schedulers then compete for the available processing elements based on the acknowledgement of the status of the processing elements. If a scheduler successfully gain the right to a specific processing element, it sends the sub-task to the element for processing. Otherwise, it updates the status of the processing element locally and repeat the matching processing again. This design can efficiently avoid the communications among the schedulers and our simulation results show the system has overwhelming advantage over the traditional single-scheduler systems.

Keywords : resource competition、dynamic scheduling、DAG、Grid computing

Table of Contents
封面內頁 簽名頁 中文摘要 iii ABSTRACT iv 誌謝 vi 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 4 第二章 相關研究 6 2.1 網格運算 6 2.2 GridSim 9 2.3 有向非循環圖 12 2.4 排程演算法 13 2.4.1 先到先服務 13 2.4.2 最短工作優先 13 2.4.3 最高回應率優先 14 2.4.4 最多連外分支優先 15 2.4.5 基因演算法 17 2.4.6 螞蟻系統 19 2.5 DAG圖形產生器 21 2.6 資源競爭策略 24 第三章 研究方法 28 3.1 使用者請求與子工作 28 3.2 子工作序列化 31 3.3 資源競爭策略 34 3.3.1 處理單元 35 3.3.2 区域排程器 36 3.3.3 請求 37 3.3.4 回應 40 3.4 工作匹配 41 第四章 實驗結果 44 4.1 DAG產生器 44 4.2 實驗假設 46 4.3 排程器與處理單元數量實驗 46 4.4 子工作數量差異 50 4.5 分支度變化實驗 54 第五章 結論與未來發展 57 5.1 結論 57 5.2 未來展望 58 參考文獻 60

REFERENCES


http://www.thefullwiki.org/Ant_colony_algorithm#cite_note-3.
