Numerical Investigation of Jet Impingement on a Semi-cylindrical Concave Surface Covered by Porous Material

劉美伶、吳佩學

E-mail: 386813@mail.dyu.edu.tw

ABSTRACT

Impingement heat transfer has been widely applied in industries. Examples are laser cooling, electronics cooling, annealing of metals or glass, and cooling of gas turbine blades. Combination of impingement with other techniques has also been attempted. The objective of the present study is to combine jet impingement technique with the use of porous material to enhance heat transfer for possible application to the leading edge cooling of gas turbine blades. In this study, impingement of a circular jet onto a semi-cylindrical concave surface with or without coverage of porous material is investigated numerically. When the surface is covered with porous material, a trapping hole for jet fluid is provided. Varying parameters include Reynolds number, nozzle-to-plate distance, and relative curvature. Results show that heat transfer performance becomes better for higher Reynolds number. When the nozzle-to-plate distance decreases, the stagnation zone Nusselt number increases. On the other hand, when that distance increases, the Nusselt number in the far field becomes better. The phenomenon is more obvious for higher Reynolds number. From the study of relative curvature effect, it is suggested that the nozzle diameter be larger than the trapping hole diameter for better heat transfer performance. The use of jet diameter smaller than that of the trapping hole will result in a remarkable decrease in Nusselt number.

Keywords: semi-cylindrical concave surface, impingement heat transfer, trapping hole, porous material, numerical modeling

Table of Contents

封面內頁 簽名頁 中文摘要…………………………………… iii 英文摘要…………………………………… iv 謝詞………………………………………………………………… v 目錄……………………………… ………………………………… vi 圖目錄……………………………………………………………… viii 表目錄……………………………………………………… x 符號說明………………………………………………………… xi 第一章 導論………………………………………………………… 1 1.1 前言…………………………………………………………… 1 1.2 研究動機與研究目的………………………………………… 2 1.3 文獻回顧……………………………………………………… 3 第二章 問題描述與研究方法…………………………………… 6 2.1 模擬幾何形狀………………………………………………… 6 2.2 基礎假設……………………………………………………… 6 2.3 統御方程式………………………………………………… 7 2.3.1 連續方程式………………………………………………… 7 2.3.2 動量方程式…………………………………………… 7 2.3.3 能量方程式………………………………………………… 9 2.3.4 紊流模型…………………………………………… 10 2.4 數值計算……………………………………………………… 14 2.5 離散方法……………………………………………………… 17 2.6 收斂條件……………………………………………………… 18 2.7 鬆弛因子……………………………………………………… 18 第三章 前處理與數值模型……………………………………… 22 3.1 平板幾何形狀與網格…………………………………… 22 3.2 數學模型確認與比較…………………………………………22 3.3 多孔材參數的選擇………………………………………………… 23 3.4 半圓柱之幾何形狀與邊界條件……………………………… 24 第四章 結果與討論……………………………………………… 33 4.1 有無多孔材的影響…………………………………………… 33 4.2 參數比較…………………………………………………… 33 4.3 相對曲率的影響………………………………………………34 第五章 結論……………………………………………………… 48 參考文獻…………………………………………………………… 49

REFERENCES


[14] 謝文政, 1999, 「具上限制板之紊流三維五噴射撞擊流場數值模擬分析」，逢甲大學機械工程研究所碩士論文。


