The Studies of Biological Function and Downstream Regulation of Desmocollin-2 (DSC2) Gene in Lung Cancer Cells

陳祐翊、蔡孟
E-mail: 386687@mail.dyu.edu.tw

ABSTRACT

Lung cancer is the most common cause of cancer death in the world, lung cancer patients died mainly due to metastasis, the lack of treatment of lung cancer diagnostic biomarkers transfer. Thus lung metastasis has been a major research goal. Desmosome are cell adhesion structures, many research now believe desmosome is the signal center. Desmocollin-2 (DSC2) is a transmembrane protein as the one of main component of the desmosomal proteins, major distribution in the epithelial cells. Recent studies indicate DSC2 in colorectal cancer, stomach cancer, oral cancer, esophageal cancer, and have proven DSC2 expression reducing cancer cell proliferation, metastasis, invasion. However, the role of the DSC2 gene in lung cancer cells is still unclear. Therefore, this study examines the DSC2 whether affect the development of lung cancer. Using real-time PCR and Western blot analysis DSC2 in CL1-0, CL1-5 and A549 lung cancer cell line mRNA and protein expression levels, the results indicate CL1-0 DSC2 expression than CL1-5 and A549 higher. Preliminary evidence in various cancer cell lines, DSC2 expression is different. Using CL1-0 cell line inhibition by shRNA after analysis of gene function DSC2. The results demonstrate inhibition DSC2 could promote cell proliferation, migration and invasion capabilities, and also lead to cell epithelial to mesenchymal transition (EMT) phenomenon. DSC2 expressed in tumor development plays an important role. In order to understand how DSC2 affects cell proliferation, migration and invasion capacity, we used microarray assay method of analysis found DSC2 possible by adjusting: 1. MMP10, SHISA3, NDRG1 and SLIT2 performance may affect cell metastasis. 2. Desmosome other components of the protein JUP, PKP2, DSP, DSC3, DSC1 DSG2 performance and impact of cell adhesion and movement. 3. EGFR and DLC1 expression may affect cell growth. 4. IL18 and SOX4 performance may affect apoptosis. This study further explored DSC2 regulatory mechanisms in lung cancer patients for future treatment and management is a great help.

Keywords : DSC2、Lung cancer、Proliferation、Metastasis、Invasion、EMT、Microarray
建立抑制DSC2之系統 17

4.6 質體DNA萃取 17
4.6.1 傳統法質體DNA萃取 17
4.6.2 萃取質體DNA 18

4.7 DNA電泳 19

4.8 DNA膠體純化 20

4.9 轉染 (Transfection) 20

4.10 連續稀釋挑Stable Clone 21

4.11 RNA萃取 22

4.12 cDNA合成反應 22

4.13 即時定量PCR (QPCR) 23

4.14 西方墨點法(Western blot) 24
4.14.1 SDS膠體的製備 24
4.14.2 蛋白質樣品製備 25
4.14.3 蛋白質的定量 26
4.14.4 SDS膠體電泳 26
4.14.5 半乾式電轉 (Semi-Dry Transfer) 27
4.14.6 抗體雜合 28

4.15 MTT assay 28

4.16 細胞群落分析 (Colony formation assay) 29

4.17 Soft agar assay 29

4.18 細胞遷移能力分析 (Wound healing assay) 30

4.19 細胞侵入能力分析 (Transwell invasion assay) 30

4.20 Micoarray分析 31

5. 結果 33
5.1 分析DSC2基因在CL1-0、CL1-5和A549肺癌細胞株中mRNA表現量的差異 33
5.2 分析DSC2基因在CL1-0、CL1-5和A549肺癌細胞株中蛋白質表現量的差異 33
5.3 利用即時定量PCR方法確定抑制DSC2基因之肺癌模式細胞的建立 34
5.4 利用西方墨點法確定抑制DSC2基因之肺癌模式細胞的建立 35
5.5 抑制DSC2基因表現會促進肺癌細胞的增生能力 35
5.6 抑制DSC2基因表現會促進肺癌細胞群落形成的能力 36
5.7 抑制DSC2基因表現會促進肺癌細胞在Anchorage-independent環境下細胞群落形成的能力 36
5.8 抑制DSC2基因表現會促進肺癌細胞的遷移能力 37
5.9 抑制DSC2基因表現會促進肺癌細胞侵入能力 37
5.10 抑制DSC2基因表現會促進肺癌細胞表現EMT型態 38
5.11 抑制DSC2基因表現可能影響的訊號路徑 39
5.12 在增生、細胞凋亡、細胞黏附、細胞週期和轉移這五個主要的細胞功能中受DSC2所影響的基因 39
5.13 抑制DSC2基因表現所促進的基因 40

5.14 Microarray assay data與即時定量PCR data 41

6. 討論 42

7. 結論 49

參考文獻 66

附錄 81

REFERENCES
Repression of the desmocollin 2 gene expression in human colon cancer cells is relieved by the homeodomain transcription factors Cdx1 and Cdx2.


