In this thesis, the Angiotensin Converting Enzyme (ACE) inhibitory activity and bioactive compounds in two kinds of rice in Taiwan, Taiwan Japonica 9 (TJ9) and Taichung Indica 10 (TCI10), were investigated. Brown rice seeds were selected and germinated under conditions, such as temperature 37 °C; a time period of 24, 48 and 72 hours; closed vessel; dark; soaked in water and glutamic acid solution. The ACE inhibitory activity was detected by UV/VIS method and RP-HPLC for bioactive compounds. The aim of the study is to detect ACE inhibitory activity and bioactive compounds of ungerminated and germinated brown rice. There are significant differences among the level of ACE inhibitory activity and bioactive compounds (γ-Oryzanol, α-Tocopherol, α-Tocotrienol, and GABA) of various ungerminated and germinated brown rice soaking in different solutions of various time periods. The highest ACE inhibitory activity 87% TCI10 germination in water solvent with 15% ethanol extraction at the first day; TJ9 88% germination in glutamic acid solvent with water extract at the second days. High contents of GABA were found: 99.27 and 99.02 mg/100g (TCI10G3 and TJ9G3) germination in glutamic acid solvent. The γ-Oryzanol content of the samples was highest on the germination in water solvent, 67.6 and 71.02 mg/100g (TCI10W3 and TJ9W3). α-Tocopherol 0.76 and 0.89 mg/100g (TCI10W3 and TJ9W3) germination in water solvent. α-Tocotrienol 0.41 and 0.44 mg/100g (TCI10G3 and TJ9G3) germination in glutamic acid solvent. According to the obtained results, we conclude that after germinating, nutrient content of brown rice increases, with higher ACE inhibitory activity and bioactive compounds content. The suggestion is that, beside white rice, germinated brown rice could be used as a health food in cooking everyday.
REFERENCES


Table 4.1 Proximate compositions of TCI10 and TJ9 brown rice after germination under various conditions.

Table 4.2 Proximate compositions of brown rice after germination in different conditions.

Table 4.3 GABA contents of TCI10 and TJ9 germinated brown rice.

Table 4.4 GABA content of various brown rice germinated using different methods.

Table 4.5 α-Tocopherol contents of TCI10 and TJ9 germinated brown rice.

Table 4.6 α-Tocotrienol contents of TCI10 and TJ9 germinated brown rice.

Table 4.7 γ-Oryzanol contents of TCI10 germinated brown rice.

Table 4.8 γ-Oryzanol contents of TJ9 germinated brown rice.

Table 4.9 Total the ACE inhibitory activity and bioactive compounds content of brown rice and germinated brown rice.

Table 4.10 Correlation between ACE inhibitory activity and bioactive compounds of TJ9 germinated brown rice.

Table 4.11 Correlation between ACE inhibitory activity and bioactive compounds of TCI10 germinated brown rice.

Figure 2.15 Summary of functional effects of γ-oryzanol.

Figure 3.1 Experimental flow chart.

Caria, R. B., Mendonca, A. and Ramis-Ramos, G. 2009. Composition, industrial processing and applications of rice brain γ-oryzanol. Journal of...


Sh. and Bruce, N. A. 2001. Tocopherol, the major form of vitamin E in the US diet, deserves more attention. The American Journal of Clinical...

Watchraparpaiboon, W., Laohakunjit, P., Kerdchoechuen, O. and Photchanachai, S. 2007. Effects of pH, temperature and soaking time on...


GABA (B) receptor modulation of Ca2+ currents in rat sensory neurones by the G protein G (0): antisense oligonucleotide studies. Journal of Physiol. 470: 1–11

McMaster, G., Angst, C., Bittiger, H., Froestl, W. and Bettler, B. 1997. Expression cloning of GABA (B) receptors uncovers similarity to...


Association of Official Agricultural Chemists 1995 (A.O.A.C.)


Mohan, B. H., Malleshi, N. G. and Koseki, T. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. Journal of Food Science and Technology. 43: 784-791


Maisont, S. and Narkrugsa, W. 2010. The effect of germination on GABA content, chemical composition, total phenolics content and antioxidant capacity of Thai waxy paddy rice. Journal of Natural Science. 44: 912-923


