The Research of Controller Preference Setting of Hobbing Machine - Taking FANUC as an Example

童卜信、張義芳
E-mail: 374900@mail.dyu.edu.tw

ABSTRACT

Gear is one of the widely-used transmission components. With the development of the technology, we value gear precision than before; therefore, the manufacturing method is very important. In manufacturing, hobbing machine, gear-shaping machine, and other machines are widely-used in the manufacture of various gears. Among them, hobbing machine is easy to set, efficient in production, and the quality of products is stable. After regrinding, the precision and quality of products are great, so the hobbing machine is widely-used. However, compare with other machines, hobbing machine is easy to shake when process due to the snatchy cutting in hobbing process. Therefore, in order to promote better stability when processing, the research focuses on the following:

After the hobbing machine is assembled, in the preference setting process of FANUC controller and verification process of controller adjustment, we use Servo-Guide software to intercept Pass Error Messages from Motorserver Encoder to judge the speed gain of each axle and broadband adjustment. By doing this, we can control the effect of High Frequency Resonance.

Keywords : hobbing machine、gear-shaping machine、snatchy cutting、speed gain

Table of Contents

封面内頁 簽名頁 中文摘要.....................iii 英文摘要.....................iv 誌謝........................v 目錄........................vi 圖目錄.......................viii 表目錄.......................x 符號說明.....................xi 第一章 緒論 1.1研究動機與目的.....................1 1.2文獻回顧..........................2 第二章 研究內容與方法 2.1齒輪創成製程......................7 2.2捲齒加工介紹......................9 2.3齒輪捲齒刀形式.....................16 第三章 進給系統理論分析 3.1 控制器的功能簡介..................21 3.1.1 控制器的選用...................21 3.1.2 建構伺服控制系統模型.............22 3.2 控制系統原理.....................25 3.2.1 直線插補器架構..................25 3.2.2 圓弧插補器架構..................26 3.2.3 預視插補器架構..................27 3.2.4 加減速架構.....................29 3.3 伺服控制系統原理..................30 3.3.1 速度迴路控制器..................30 3.3.2 位置迴路控制器..................32 3.3.3 速度前饋控制器..................33 3.4 共振原理.........................35 第四章 控制器調機實驗..................37 4.1 重要參數說明......................39 4.2 測試結果.........................46 第五章 結果討論.......................50 附錄一...............................52 參考文獻..............................54

REFERENCES

[1] 吳序堂,齒輪嚙合原理,機械工業出版社,北平,1982。
[2] 曾冠智,滾刀數學模式的建立與滾齒加工後工件齒輪之齒面誤差分析,國立中正大學碩士論文,民國九十二年七月。
[4] 方宏聲,蝸桿蝸輪組之製造分析,國立交通大學博士論文,民國八十五年六月。
[5] 張信良,電腦數控捲齒機之捲齒滾削模擬,國立交通大學博士論文,民國八十五年六月。


