Isolation of Keratinase-Producing Microorganisms, Analysis of Enzyme Characteristics and Applications

羅敏捷、涂瑞澤、吳建一
E-mail: 364883@mail.dyu.edu.tw

ABSTRACT

Six feather-degrading microorganisms with keratinase producing capacity were isolated from poultry farm feather waste soil in Changhua. They were identified by sequence analysis of 16S rDNA, and named as Bacillus megaterium Wu1, Bacillus cereus Wu2, Bacillus cereus Wu3, Brevibacillus parabrevis Wu4, Bacillus thuringiensis Wu5 and Bacillus cereus Wu6, respectively. The optimum initial pH value of medium to Wu1, Wu2, Wu4, Wu5 and Wu6 was pH 5.0, but Wu3 was pH 9.0. The optimum culture temperature to these six strains between 30 and 40°C. The extracellular keratinases produced by six strains grown on feather as carbon and nitrogen source after liquid culture with each optimum cultured conditions for 4 days. Four keratinases (B. megaterium Wu1, Bacillus cereus Wu3 and Bacillus thuringiensis Wu5 and Bacillus cereus Wu6) were purified by ammonium sulfate precipitation, Sephacryl S-200 HR gel filtration column and DEAE Sephadex A-50 ions exchange column. By these steps, the purity of these enzymes increased by 7.63, 19.48, 2.23 and 4.71 fold, with activity recovery of 13.59%, 26.32%, 16.60% and 10.55%, respectively. The molecular mass of these enzymes determined by SDS-PAGE was 34, 46, 32, 55, 68 kDa, respectively, the keratinase Wu6 was a dimeric protein. These purified enzymes exhibited activity at pH range of pH 4.0-12.0 and pH 6.0-11.0 temperature range of 10-100°C, respectively, with azo-casein as substrate. Optimum pH and temperature of B. megaterium Wu1 and B. cereus Wu6 keratinases were pH 7, and pH8, and 50°C, respectively. The proteinase inhibitory effect of metal chelator EDTA and O-phenanthroline characterized three keratinases as metalloproteases. The three bacterial keratinases were completely activated by the presence of Na+ and Mg2+. B. megaterium Wu1 and B. cereus Wu6 keratinases were stable as powder storage at various temperature, nevertheless the keratinases activity started to drop significantly as liquid storage at room temperature. Further, the keratinase Wu1 showed enhance stability in the presence of some organic solvents, but reducing agents were inhibited the keratinase activity from B. megaterium Wu1 and B. cereus Wu6. The Km of B. megaterium Wu1 and B. cereus Wu6 keratinases with azo-casein as substrate were 0.85 and 3.28 g/L, respectively.
Figure 2-47 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, Bacillus megaterium Wu1
Figure 2-46 The effect of various carbon sources on keratinase activity production by Bacillus cereus Wu2
Figure 2-45 The effect of various carbon sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus cereus Wu6
Figure 2-44 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, maximum keratinase production rate of Bacillus thuringiensis Wu5
Figure 2-43 The effect of nitrogen sources on keratinase activity production by Bacillus megaterium Wu4
Figure 2-42 The effect of various nitrogen sources on keratinase activity production by Brevibacillus parabrevis Wu4
Figure 2-41 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate by Bacillus cereus Wu3
Figure 2-40 The effect of various nitrogen sources on keratinase activity production by Bacillus thuringiensis Wu5
Figure 2-39 The effect of nitrogen sources on keratinase activity production by Bacillus cereus Wu3
Figure 2-38 The effect of various nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-37 Effect of different nitrogen sources on keratinase activity and initial keratinase production rate, Bacillus cereus Wu6
Figure 2-36 The effect of various nitrogen sources on keratinase activity production by Bacillus thuringiensis Wu5
Figure 2-35 The effect of nitrogen sources on keratinase activity, specific activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-34 The effect of nitrogen sources on keratinase activity production by Bacillus cereus Wu6
Figure 2-33 The effect of various nitrogen sources on keratinase activity production by Bacillus megaterium Wu1
Figure 2-32 The effect of nitrogen sources on keratinase activity production by Bacillus cereus Wu3
Figure 2-31 Effect of different incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-30 The effect of temperature on keratinase activity production by Bacillus cereus Wu2
Figure 2-29 The effect of temperature on keratinase activity production by Bacillus cereus Wu6
Figure 2-28 The effect of temperature on keratinase activity production by Bacillus thuringiensis Wu5
Figure 2-27 Effect of different incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-26 The effect of temperature on keratinase activity production by Brevibacillus parabrevis Wu4
Figure 2-25 Effect of incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-24 The effect of temperature on keratinase activity production by Bacillus cereus Wu2
Figure 2-23 The effect of temperature on keratinase activity production by Bacillus cereus Wu6
Figure 2-22 The effect of temperature on keratinase activity production by Bacillus thuringiensis Wu5
Figure 2-21 Effect of incubation temperature on keratinase activity and initial keratinase production rate, max keratinase production rate Bacillus megaterium Wu1
Figure 2-20 The effect of temperature on keratinase activity production by Bacillus megaterium Wu1
Figure 2-19 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus cereus Wu2
Figure 2-18 The effect of initial pH on keratinase activity production by Bacillus cereus Wu6
Figure 2-17 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Brevibacillus parabrevis Wu4
Figure 2-16 The effect of initial pH on keratinase activity production by Bacillus thuringiensis Wu5
Figure 2-15 The effect of initial pH on keratinase activity production by Bacillus cereus Wu2
Figure 2-14 The effect of initial pH on keratinase activity production by Brevibacillus parabrevis Wu4
Figure 2-13 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate Bacillus cereus Wu2
Figure 2-12 The effect of initial pH on keratinase activity production by Bacillus cereus Wu2
Figure 2-11 Effect of initial pH on keratinase activity and initial keratinase production rate, max keratinase production rate of Bacillus thuringiensis Wu5
Figure 2-10 The effect of initial pH on keratinase activity production by Bacillus megaterium Wu1
Figure 2-9 The effect of initial pH on keratinase activity production by Bacillus cereus Wu3
Figure 2-8 The effect of initial pH on keratinase activity production by Bacillus megaterium Wu1
Figure 2-7 Phylogenetic tree based on 16S rDNA sequence comparisons of strain Wu4 and selected bacteria
Figure 2-6 Phylogenetic tree based on 16S rDNA sequence comparisons of strain Wu2 and selected bacteria
Figure 2-5 Phylogenetic tree based on 16S rDNA sequence comparisons of strain Wu1 and selected bacteria
Figure 2-4 Appearance of molds cultured with the screened strains and micromorphology of gram strain
Figure 2-3 Phylogenetic tree based on 16S rDNA sequence comparisons of strain Wu1 and selected bacteria
Figure 1-3 The structure of (A) The α-helix and (B) β-sheet structure
Figure 1-2 The appearance conformation of the screened strains
Figure 1-1 Schematic of this study procedure
Figure 1-4 The structure of (a) hydrogen bond
Figure 1-3 The structure of (b) disulfide bridge
A. B. and Antranikian, G. 1996. Keratin degradation by Frevidobacterium pennavorans, a novel thermophilic anaerobic species of the order


Fasasi, Y. A. 1997. Studies on keratinophilic actinomyctes isolated from Kuwait soil. MSc Thesis, Department of Biological Sciences, Kuwait University.


El-Shora, H. M., Ashour, 1067-1072.


Kunert, J. 1989. Biochemical mechanisms of keratin degradation by actinomycete

Kunert, J. 1985b. Metabolism of sulphur containing amino acids in the dermatophyte Microsporium gypseum. II: Acidic


soluble decomposition product Zeltschrife fuer Allgermerine Microbilogie Morphologie, Genetic und Oekologie der Microrganismen. 16: 97-105.


sporogenes bv. pennavorans bv. nov., a thermotolerant organism isolated from solfataric muds. Microbiological Research. 163: 105-112. 103.Juan,


from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol. 45: 217-222. 102.Ionata, E.,


protease from newly isolated Bacillus cereus DCUW. J. Ind. Microbiol. Biotechnol. 35: 825-834. 85.Gousterova, A., Braikova, D., Goshev, I.,

100.Holmquist, B. and Vallee, B. L., 1974. Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J. Biol. Chem. 249:


3271-3275.


3271-3275.


Lin, X., Inglis, G. D., Yanke, 139.


3271-3275.


Feed Sci. Technol. 47: 79-188.


9620-9625.


3271-3275.


3271-3275.


Lin, X., Inglis, G. D., Yanke, 139.


3271-3275.


Feed Sci. Technol. 47: 79-188.


9620-9625.


3271-3275.


3271-3275.


