The star graph is a famous interconnection networks. Let $S_n = (V_0 \cup V_1, E)$ be the n-dimensional star graph. Let P be a path and $V(P)$ be the set of vertices on P. Two paths P_1 and P_2 are two spanning disjoint paths of $S_n = (V_0 \cup V_1, E)$ if $V(P_1) \cap V(P_2) = \emptyset$ and $V(P_1) \cup V(P_2) = V_0 \cup V_1$. Let F_{av} be the set of F_{av} pairs of adjacent vertices and F_e be the set of F_e faulty edges of S_n. In this thesis, we will show that for any $s_1, s_2 \in V_0$ and $t_1, t_2 \in V_1$, there exist two spanning disjoint paths $P(s_1, t_1)$ and $P(s_2, t_2)$ of $S_n - F_{av} - F_e$ for $F_{av} + F_e \leq n-4$ and $n \geq 5$.

Keywords : star graph, spanning disjoint paths, edges fault tolerance, adjacent vertices fault tolerance

Table of Contents

目录 封面内页 签名頁 中文摘要………………………………………………………………iii ABSTRACT …………………iv 致謝…………………………………………………………………………v 目錄…………………………………………………………………………vi 圖目錄……………………………………………………………………vii Chapter 1 Introduction……………………………………………………1 Chapter 2 Preliminaries………………………………………4 Chapter 3 The adjacent fault-tolerance for 2-spannability of S_n …………6 Chapter 4 Conclusion………………………………………………26 References
REFERENCES

