Design and Fabrication of Piezoelectric Actuated Micropump with Check Valve and Application to Electronic Cooling

莊明勳、鄭江河
E-mail: 364839@mail.dyu.edu.tw

ABSTRACT

In recent years, electronic products in the continuous improvement in performance. This trend urges the heat sink of electronic chip to become gradually important, and then that will develop many type of heat sink, which is water cooling system. This study aims to demonstrate the performance of the piezoelectric actuated micro-pump with check valve and their applications in Personal Computer cooling. This project aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micro-pump having the advantages of miniature size, light weight and low power consumption. The micropump consists of a piezoelectric actuator, a stainless steel chamber plate with membrane, an acrylic channel plate with two valve seats, and two cantilever-type PDMS-made check valves. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro-pump chamber and channel. And explore the driving to voltage, operating frequency of piezoelectric dynamic flow valve micropump with the displacement. Find the maximum flow rate and maximum back pressure with the heat sink to achieve the best thermal design.

Keywords : micro-pump、check valve、piezoelectric actuator、electronic cooling

Table of Contents

封面內頁 簽名頁 中文摘要...iii 英文摘要...iv 賢謝...v 目錄...vi 圖目錄...viii 表目錄...xii 符號說明...xiv 第一章 緒論...1 1.1 前言...1 1.2 研究動機...2 1.3 文獻回顧...4 第二章 散熱式微泵浦之設計與分析...14 2.1 壓電有閥式微泵浦之原理...14 2.2 壓電有閥式微泵浦結構設計...16 2.3 散熱系統之原理...19 2.3.1 微泵浦應用於散熱系統之...19 第三章 微泵浦結構元件製作...21 3.1 黃光製程...21 3.2 蝕刻製程...22 3.3 元件製作...23 3.4 壓電致動器之製作...25 3.5 PDMS特性與調配...28 3.6 閥體的製作...28 3.7 壓電有閥微泵浦組裝...30 第四章 實驗設備與架設...32 4.1 流量之量測實驗...32 4.2 揚程實驗量測...34 4.3 壓電致動器位移量測設備架構...36 4.4 散熱系統之流阻架設...39 4.5 微泵浦應用於散熱系統實驗架設...40 第五章 實驗結果與討論...44 5.1 微泵浦之水流量實驗量測...44 5.1.1 閥體厚度對流量之影響...44 5.1.2 操作電壓對流量之影響...48 5.2 微泵浦之揚程實驗量測...50 5.2.1 閥體厚度對揚程的影響...50 5.2.2 操作頻率對揚程的影響...52 5.3 微泵浦之空氣流量實驗量測...53 5.4 散熱系統之流阻實驗量測...55 5.5 微泵浦應用於散熱系統實驗...57 第六章 結論...67 6.1 結論...67 6.2 未來發展...68 參考文獻...70

REFERENCES


S.V. Garimella, C.B. Sobhan, Recent advances in the modeling and applications of nonconventional heat pipes, Advances in Heat Transfer 35 (2001) 249–308 (Chapter 4).


