近年來，電子產品在性能上不斷進步，使得電子元件的散熱裝置日趨重要，而常見的風冷散熱也漸漸被水冷散熱取代。本論文將利用壓電致動器的特性，設計、製作壓電致動有閥微泵浦並且驗證此微泵浦在電子散熱之效能。本論文主要是設計、製作及測試新型壓電致動有閥微泵浦，其具有微小化、質量輕及低消耗功率等優點。微泵浦是由壓電致動器、具有振膜結構之不鏽鋼材料的艙體層、還有流道及閥座結構之壓克力材料的流道層，及兩個由聚二甲基矽氧烷所製作之懸臂樑結構的單向閥所組合而成。此元件設計需要有最大的壓縮比，如此即可當液體泵浦或氣體泵浦使用，並且能夠自我汲取及容許氣泡在液體中。如要達到此目的，需要有最小的艙體及流道體積並且能產生最大的致動體積變形。並探討驅動電壓、操作頻率對壓電致動有閥微泵浦的流量與位移的影響，找出最大的流量與最高背壓配合散熱鰭片達到最佳的散熱設計。


吳鴻昀, "壓電式薄膜微型泵的發展與應用", 碩士論文, 台灣大學機械工程研究所, 2008。

林政瑤, "單邊擺動壓電式薄膜泵之設計與效能分析", 碩士論文, 台灣大學機械工程研究所, 2008。

高仲志, "壓電式薄膜泵結合冷卻水套 散熱式微泵 應用於筆記型電腦散熱之研究", 碩士論文, 台灣大學機械工程研究所, 2008。

曾易彬, "壓電有關式微幫浦之設計與製作", 碩士論文, 大葉大學機械工程研究所, 2008。


S.V. Garimella, C.B. Sobhan, Recent advances in the modeling and applications of nonconventional heat pipes, Advances in Heat Transfer 35 (2001) 249–308 (Chapter 4).


Marlin R. Vogel, "Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink", IEEE Transactions on...


