The purpose of this study is to reduce the flutter vibrational modes of plates using Macro Fiber Composite (MFC) actuators. To achieve this goal and avoid causing structural damage in any vibration mode, the additional damping and external shunt circuits are added to consume the energy when the bending and twisting mode vibrations occur. In this study, three control techniques are utilized. The first is active control method, a velocity-feedback system with a laser displacement meter, a low-pass filter, a voltage amplifier and MFC actuators is applied to reduce vibration. The second is passive control method, the MFC actuators, R-shunt and RL-shunt are constructed to consume the vibrational energy resulting in vibration attenuation. The last is the hybrid control method which combines with active and passive control methods. Finally, the results of three techniques are compared in order to realize the performance in flutter attenuation.

Keywords: Plates, MFC actuators, Shunt circuits, Flutter reduction, Hybrid control


Quan Wang and Nan Wu, "A review on structural enhancement and repair using piezoelectric materials and shape memory alloys", Smart Materials and Structures, 21, 013001(23pp), (2012)

周卓民, "壓電力學", 全華科技圖書股份有限公司, 台北 (1992/11)。

周逸翔, "翼翅平板結構的主被動式顫振控制", 大葉大學碩士論文, 2011。

周忠誠,"壓電元件與複合壓電結構之動態特性分析與實驗量測", 台灣大學機械工程研究所博士論文,台北 (1998/06)。

周卓民, "層狀壓電薄殼之研究: 設計、製程與實驗量測", 台灣大學應用力學研究所博士論文,台北 (1997/06)。
錢偉長，《彈性力學》，亞東書局，台北 (1991)。